Answer:
Hey there
Where trying to say that:
Newton's first law gives the concept of force and momentum?
That's false if that's is what you said.
Newton's first law tells us that objects in motion will remain in motion and objects at rest will remain at rest.
Newton's second law gives us the concept of force and momentum.
We anticipate a constant Poynting vector of magnitude since the hot resistor will be emitting heat and none of the electric or magnetic fields will change over time.
S = P/A
= I2R/ 2πrL
= 332 kW/m2
Always pointing away from the wire, this Poynting vector.
<h3>What is the Poynting vector?</h3>
Describes the size and direction of the energy flow in electromagnetic waves using a Poynting vector. It bears the name of the 1884 invention of English physicist John Henry Poynting. It stands for the electromagnetic field's directional energy flux or power flow. The Poynting vector is significant in a static electromagnetic field because it determines the direction of energy flow in an electromagnetic field. This vector represents the radiation pressure of an electromagnetic wave and points in its direction of propagation.
To learn more about Poynting vector, visit:
<u>brainly.com/question/17330899</u>
#SPJ4
The answer to this is easy once you look at the units for Joules. 1 Joule = 1 N.m (Newton.meter). The 'Newton' is the units of force that we are trying to find, and we know the meters is 2, from the question. So you have an 8Joule or 8N.m energy difference over 2 meters.
well if we know the meters, then the real question is written as:
8N.m = ?N x 2m
so just solve for N;
N = 8N.m / 2m = 4
So F = 4N
Answer:
It hits the coconut
Explanation:
The coconut fell immediately after the trigger was pulled as a result of the impact made by the bullet on the coconut. The Third Law of motion states that : For every action, there is an equal and opposite reaction. The action was performed when the bullet struck the coconut, while the coconut reacted by falling of the tree.