Answer: A and B
Explanation:
A
The wavelength of both transverse and longitudinal waves is measured parallel to the direction of the travel of the wave.
Because wavelength is the distance between the two successful crest or trough.
B)
Amplitude of longitudinal waves is measured at right angles to the direction of the travel of the wave and represents the maximum distance the molecule has moved from its normal position.
Because amplitude is the measure of maximum displacement from the original position
Answer:
The vector sum of all forces acting on it is zero, its at equilibrium.
Explanation:
The bag of marbles hanging on a spring scale applies its weight downwards, which was counterbalanced by the reaction from the spring scale (obeying the Newton's third law of motion). And since no external forces are applied to the system, thus the equilibrium of the system.
If the weight of the bag is greater than the reaction from the spring scale, the scale breaks and the system would not be balanced.
Answer:

Explanation:
From the question we are told that:
Mass 
Speed 
Mass 
Speed 
Generally the equation for Magnitude of the Third piece is mathematically given by


Where



And


Therefore


Answer:
1. b. The door is exerting a centripetal force on you that balances the centrifugal force of the turn.
2. b. There is no net force acting on the object.
Explanation:
1. This is because as you move to the right due to the centrifugal force of the turn, a corresponding centripetal force acts on you due to the door which does not allow you fall out of the car since,<u> the door is exerting a centripetal force on you that balances the centrifugal force of the turn. </u>
So, the answer is b
2. This is because, since the object moves at a constant speed and thus does not accelerate, no net force can act on it since, a net force would imply that the object accelerates. Note that a constant speed does not imply that no force acts on it. It only shows that the resultant or net force is zero since the object does not accelerate.
So, <u>there is no net force acting on the object. </u>
So, b is the answer.
Answer: The height of the cloud = 394.55 m
Explanation:
The observer is 500m away from the spotlight.
Let x be the distance from the observer to the interception of the segment of the height, h with the floor. The equations are thus:
Tan 45° = h/x ... eq1
Tan 75° = h/(500- x ) ... eq2
From eq 1, Tan 45° = 1, therefore eq1 becomes:
h = x ... eq3
Put eq3 into eq2
Tan 75° = h/(500- h)
h = ( 500 - h ) Tan 75°
h = 500Tan 75° - hTan75°
h + h Tan 75° = 500 Tan 75°
h ( 1 + Tan 75° ) = 500 Tan75°
h = 500Tan75°/ (1 + Tan 75°)
h= 1866.02 / 4.73
h = 394.55m