While skydiving, its not just freely falling under Earth's gravity. Additional force called drag acts against the gravity which slows down the rate of fall. Drag is caused by the air molecules which pushes against the body as it falls through them. This is actually a significant amount of force which slows down the rate of fall of the body. Drag depends on the contact surface area and weight. More the surface area in contact, more would be the drag. The sitting position of the skydiver would experience less drag than the chest down position because of the less contact surface area of the body with the air molecules while in the former case. No two persons have identical body shape and weight. Hence, the rate of fall can be made nearly equal but not exactly equal. This is would be possible when they are having same body position.
Answer:
0.2
Explanation:
The given parameters are;
The acceleration of the train, a = 0.2·g
The mass of the person standing on the train = m
Let μ represent the coefficient of static friction, we have;
The force acting on the person, F = m × a = m × 0.2·g
The force of friction acting between the feet and the floor,
= m·g·μ
For the person not to slide we have;
The force acting on the person = The force of friction acting between the feet and the floor
F = 
∴ m × 0.2·g = m·g·μ
From which we get;
0.2 = μ
The coefficient of static friction that must exist between the feet and the floor if the person is not to slide, μ = 0.2.
The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Time = (distance) / (speed)
Time = (150 x 10⁹ m) / (3 x 10⁸ m/s) =
50 x 10¹ sec =
<em>500 sec</em> = 8 min 20 sec
Answer: (a) The magnitude of its temperature change in degrees Celsius is
.
(b) The magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.
Explanation:
(a) Expression for change in temperature is as follows.

= 15.1 K
= 
= 
= 
Therefore, the magnitude of its temperature change in degrees Celsius is
.
(b) Change in temperature from Celsius to Fahrenheit is as follows.
F = 1.8C + 32
C = 
Since, K = C + 273
or, 

= 1.8 (15.1)
= 
or, = 
Thus, we can conclude that the magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.