The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have

where C are the concentration values and t is the time taken for it to decompose.


Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s
Answer:
F = 7.2N
Explanation:
The resultant of two forces acting at some angle is given by using the vector addition as given below
F =√F1^2+F2^2+2F1F2cosθ
Where F1 = 6N and F2 = 8N
θ = 240°
Substituting the values into the equation above
F = √ 6^2+8^2+ 2(6×8)cos240
F =√ 36+64+96cos240
F = √ 100+96 ×-0.5
F = √ 100-48
F = √ 52
F = 7.211
F = 7.2N
Answer:
Explanation:
The amount of force needed needs to be greater than all the forces acting in the opposite direction that the bowling ball was thrown. This includes air resistance, floor friction, gravity, and any other force involved. As long as the force acting on the bowling ball that is causing it to go in the direction of the pins is slightly greater than the opposite acting forces then it will continue in that direction. Since no values are provided we cannot calculate the actual precise value of force needed.
Answer:
1.7 m/s²
Explanation:
d = length of the ramp = 13.5 m
v₀ = initial speed of the skateboarder = 0 m/s
v = final speed of the skateboarder = 7.37 m/s
a = acceleration
Using the equation
v² = v₀² + 2 a d
7.37² = 0² + 2 a (13.5)
a = 2.01 m/s²
θ = angle of the incline relative to ground = 29.9
a' = Component of acceleration parallel to the ground
Component of acceleration parallel to the ground is given as
a' = a Cosθ
a' = 2.01 Cos29.9
a' = 1.7 m/s²
The area of a triangle is found by multiplying the height of the triangle by the length of the base and dividing them both by 2. The length of the shorter side in the equation is useless information, so just multiply 39 by 25 and divide that by 2. A=487.5 sq ft. Also, that's a pretty big kite.