Hey there!
Values Ka1 and Ka2 :
Ka1 => 8.0*10⁻⁵
Ka2 => 1.6*10⁻¹²
H2A + H2O -------> H3O⁺ + HA⁻
Ka2 is very less so I am not considering that dissociation.
Now Ka = 8.0*10⁻⁵ = [H3O⁺] [HA⁻] / [H2A]
lets concentration of H3O⁺ = X then above equation will be
8.0*10−5 = [x] [x] / [0.28 -x
8.0*10−5 = x² / [0.28 -x ]
x² + 8.0*10⁻⁵x - 2.24 * 10⁻⁵
solve the quardratic equation
X =0.004693 M
pH = -log[H⁺]
pH = - log [ 0.004693 ]
pH = 2.3285
Hope that helps!
As the earth is in the form of a sphere, the angle of incidence of the sun's rays at the earth's surface increases from the equator towards the poles and therefore the amount of heat received on a GIVEN AREA diminishes in the same direction. Temperature is therefore normally hottest near the equator and coolest near the poles.
Answer:
Option E!
Explanation:
If we were to draw the lewis dot structure for IBr2 -, we would first count the total number of valence electrons ( " available electrons " ). Iodine has 7 valence electrons, and so does Bromine, but as Bromine exists in 2, the total number of valence electrons would be demonstrated below;

Don't forget the negative on the Bromine!
Now go through the procedure below;
1 ) Place Iodine in the middle and draw single bonds to each of the bromine.
2 ) Add three lone pairs on each of the Bromine's
3 ) Now we have 6 electrons left, if we were to exclude the electrons shared in the " single bonds. " This can be placed as three lone pairs on Iodine ( central atom )!
The molecular geometry can't be linear, as there are lone pairs on the atoms. This makes it bent.