Answer:
Explanation:
general expression for the ionization energy of any one-electron species.
= z² x ground level energy / n²
z is atomic no , n is energy level .
ground level energy of
H = 1.31 x 10³ kJ/mol
He⁺ = 2² x 1.31 x 10³ kJ/mol = 5.24 x 10³ kJ/mol
Li²⁺ = 3² x 1.31 x 10³ kJ/mol = 1.18 x 10⁴ kJ/mol
b ) the ionization energy of B⁴⁺.
= 5² x 1.31 x 10³ kJ/mol = 32.75 x 10³ kJ/mol
c ) minimum energy required to remove the electron from the n = 3 level of He⁺ per mole
= 5.24 x 10³ / 9 kJ/mol
= 5.82 x 10² kJ/mol
= 5.82 x 10² x 10³ / 6.02 x 10²³ J
.9667 X 10⁻¹⁸ J
= .9667 X 10⁻¹⁸ / 1.6 X 10⁻¹⁹ eV
= 6.042 eV
= 1237.5 / 6.042
= 204.82 nm
=
d )
Answer:
aldehyde
carbon-1
ketone
carbon-2
Explanation:
Monosaccharides are colorless crystalline solids that are very soluble in water. Moat have a swwet taste. D-Fructose is the sweetest monosaccharide.
In the open chain form, monosaaccharides have a carbonuyl group in one of their chains. If the carbonyl group is in the form of an aldehyde group, the monosaccharide is an aldose; if the carbonyl group is in the form of a ketone group, the monosaccharide is known as a ketose. glucose is an aldose while fructose is a ketose.
In D-glucose, there is an aldehyde functional group, and the carbonyl group is at carbon-1 when looking at the Fischer projection.
In D-fructose, there is a ketone functional group, and the carbonyl group is at carbon-2 when looking at the Fischer projection.
River sources tend to be at the top of mountains or areas of high elevation. This means that rivers impact the entire terrain from mountains to seas and oceans.
I hope this Helps!
40×19.32/100=7.7=8×2=16Ca
35.5×34.30/100=12.1=12×2=24Cl
16×46.38/100=7.4=7×2=14O
The answer is 0.59 M.
Molar mass (Mr) of MgCl₂ is the sum of the molar masses of its elements.
So, from the periodic table:
Mr(Mg) = 24.3 g/l
Mr(Cl) = 35.45 g/l
Mr(MgCl₂) = Mr(Mg) + 2Mr(Cl) = 24.3 + 2 · 35.45 = 24.3 + 70.9 = 95.2 g/l
So, 1 mol has 95.2 g/l.
Our solution contains 55.8g in 1 l of solution, which is 55.8 g/l
Now, we need to make a proportion:
1 mole has 95.2 g/l, how much moles will have 55.8 g/l:
1 M : 95.2 g/l = x : 55.8 g/l
x = 1 M · 55.8 g/l ÷ 95.2 g/l ≈ 0.59 M