Answer:
The answer to your question is a) N₂ b) 3.04 g of NH₃
Explanation:
Data
mass of H₂ = 2.5 g
mass of N₂ = 2.5 g
molar mass H₂ = 2.02 g
molar mass of N₂ = 28.02 g
molar mass of NH₃ = 17.04 g
Balanced chemical reaction
3H₂ + 1 N₂ ⇒ 2NH₃
A)
Calculate the theoretical yield 3H₂ / N₂ = 3(2.02) / 28.02 = 0.22
Calculate the experimental yield H₂/N₂ = 2.5/2.5 = 1
Conclusion
The limiting reactant is N₂ (nitrogen) because the experimental proportion was higher than the theoretical proportion.
B)
28.02 g of N₂ -------------------- (2 x 17.04) g of NH₃
2.5 g of N₂ -------------------- x
x = (2.5 x 2 x 17.04) / 28.02
x = 85.2 / 28.02
x = 3.04 g of NH₃
Answer:
Hiya there!
Explanation:
A covalent bond forms when the difference between the electronegativities of two atoms is too small for an electron transfer to occur to form ions. Shared electrons located in the space between the two nuclei are called bonding electrons. The bonded pair is the “glue” that holds the atoms together in molecular units.
<em><u>Hope this helped!</u></em> ^w^
Credit sourced from "sciencedirect.com"
Deposition. Particles settle to the bottom of still water after being eroded.
Specific heat is the quantity of heat required to change the temperature of 1 gram of a substance by 1 degree Celsius. It is the amount per unit mass that is required to raise the temperature by one degree Celsius. Every substance has its own specific heat and each has its own distinct value. The units of specific heat are joules per gram-degree Celsius (J/f C) and sometimes J/Kg K may also be used.
Answer:
google chrome
Explanation:
it is the home button on the top left corner