Answer:
that will be 2130,1
Step-by-step explanation:
complette the square to get vertex form or y=a(x-h)^2+k
(h,k) is vertex
1. group x terms, so for y=ax^2+bx+c, do y=(ax^2+bx)+c
<span>
<span>
</span>
2, factor out the leading coefinet (constant in front of the x^2 term), basicallly factor out a
</span><span>
<span>
</span>
3. take 1/2 of the linear coefient (number in
front of the x), and square it ,then add negative and positive of it
inside parnthases
</span><span>
<span>
</span>
4. complete the squre and expand
</span>
so
y=-1/4x^2+4x-19
group
y=(-1/4x^2+4x)-19
undistribute -1/4
y=-1/4(x^2-16x)-19
take 1/2 of -16 and squer it to get 64 then add neg and pos inside
y=-1/4(x^2-16x+64-64)-19
factorperfect square
y=-1/4((x-8)^2-64)-19
expand
y=-1/4(x-8)^2+16-19
y=-1/4(x-8)^2-3
vertex is (8,-3)
Answer:
What is the question?
Step-by-step explanation:
Answer:
6060606060
Step-by-step explanation:
66666
Answer:
16ᵗʰ Term of the sequence is 1010
Step-by-step explanation:
7.)
Here,
First Term = a₁ = 5
Common Difference = d = 67
Now, For 16ᵗʰ term, n = 16
<em>aₙ = a + (n - 1)d</em>
a₁₆ = 5 + (16 - 1) 67
a₁₆ = 5 + 15 × 67
a₁₆ = 5 + 1005
a₁₆ = 1010
Thus, 16ᵗʰ Term of the sequence is 1010
<u>-TheUnknownScientist</u>