Answer:
<h3>For two events A and B show that P (A∩B) ≥ P (A)+P (B)−1.</h3>
By De morgan's law

which is Bonferroni’s inequality
<h3>Result 1: P (Ac) = 1 − P(A)</h3>
Proof
If S is universal set then

<h3>Result 2 : For any two events A and B, P (A∪B) = P (A)+P (B)−P (A∩B) and P(A) ≥ P(B)</h3>
Proof:
If S is a universal set then:

Which show A∪B can be expressed as union of two disjoint sets.
If A and (B∩Ac) are two disjoint sets then
B can be expressed as:

If B is intersection of two disjoint sets then

Then (1) becomes

<h3>Result 3: For any two events A and B, P(A) = P(A ∩ B) + P (A ∩ Bc)</h3>
Proof:
If A and B are two disjoint sets then

<h3>Result 4: If B ⊂ A, then A∩B = B. Therefore P (A)−P (B) = P (A ∩ Bc) </h3>
Proof:
If B is subset of A then all elements of B lie in A so A ∩ B =B
where A and A ∩ Bc are disjoint.

From axiom P(E)≥0

Therefore,
P(A)≥P(B)
The resultant velocity of the plane is the sum of the two velocity vectors which are perpendicular to each other. See the attached figure.
The magnitude of the resultant velocity is
.
The approximate value of the actual velocity of the plane is
. Correct choice is (D).
L(which is length) is equal to 42 divided by width which is 6. so the equation is L=42/6
Answer:
Example: these two triangles are similar: If two of their angles are equal, then the third angle must also be equal, because angles of a triangle always add to make 180°. So AA could also be called AAA (because when two angles are equal, all three angles must be equal)
Answer:
28
Step-by-step explanation: