1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
n200080 [17]
3 years ago
12

Michael rents a car for one day. The charge is $30 plus the $0.12 per mile. He wants to spend exactly $105. How many miles can h

e drive?
Mathematics
1 answer:
borishaifa [10]3 years ago
7 0

Answer:

He can drive 625 miles

Step-by-step explanation:

Total spent: $105

$105- $30 charge = $75

$75/$0.12 per mile charge

= 625 Miles

You might be interested in
Part A: Solve −np − 80 < 60 for n. Show your work. (4 points)
morpeh [17]
Solution:

1) Add 80 to both sides
-np<60+80

2) Simplify 60+80 to 140
-np<140

3) Divide both sides by p
-n<\frac{140}{p}​​

4) Multiply both sides by -1
n>-\frac{140}{p}

Done!
7 0
3 years ago
Algebra Find the value of n :<br><br> n × 0.2 = 0.08
noname [10]

Answer:

0.4

Step-by-step explanation:

n × 0.2=0.08

n = 0.08÷0.2

n = 0.4

6 0
2 years ago
Read 2 more answers
Help plz ?????????????
Lyrx [107]

Answer:

3443            

 ———— =<u><em> C. 202</em></u>

  17      

Step-by-step explanation:

Step  1  :

                  3443

Simplify   ————

                      17

Final result :

 3443            

 ———— = 202.52941

  17              

Processing ends successfully

plz mark em as brainliest :)

8 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
****Brainliest to best answer!!***<br> Thank u to everyone who helps!
Dmitrij [34]

Answer:

A

Step-by-step explanation:

When you read the question it says that her average speed from the library to the gym is 15 mph less than her speed from her home to the library. So x - 15 is what describes that situation.

If it is A it cannot be anything else.

B is incorrect. x - 15 is not a time. It is a rate. It can be used to develop the amount of time, but by itself it is still A.

C is incorrect. Her average speed from her house to the library is x

D is incorrect. The distance is given as the same as from her home to the library as  from the library to the gym. Both are 4

7 0
3 years ago
Other questions:
  • Which statements are true about tessellations?
    8·1 answer
  • ANSWER PLZ QUICK AND FAST WHAT
    8·2 answers
  • Negative 5x equals negative 40
    15·1 answer
  • Find the total number of degrees in a polygon with 13 sides
    5·1 answer
  • How do you Factor in algebra 2?<br><br> for example: <br> r^2-r-20<br> and<br> x^2+8x+12
    7·1 answer
  • What’s an equivalent expression to 4(4a+5)
    7·1 answer
  • Select the sentence that explains the error in the given statement.
    9·1 answer
  • Where stocks are traded can be called any of these except ____. A. investment arena B. trading floor C. exchange D. market
    9·2 answers
  • Shania has 12 coins in her pocket the coins have5 pennies and 7 dimes Shania randomly selects one from her pocket and without re
    11·2 answers
  • Share 28 sweets between Amanda amd Busi in the raito 3:1​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!