Answer: The given statement is TRUE.
Explanation:
An equilibrium reaction is one in which rate of forward reaction is equal to the rate of backward reaction.
Equilibrium constant is defined as the ratio of the product of the concentration of products to the product of the concentration of reactants each raised to their stochiometric coefficient.
For example for the given equilibrium reaction;

![K_{eq}=\frac{[H_2]^2[O_2]}{[H_2O]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BO_2%5D%7D%7B%5BH_2O%5D%5E2%7D)
Thus the given statement that in calculating the equilibrium constant for a reaction, the coefficients of the chemical equation are used as exponents for the factors in the equilibrium expression is True.
Answer: 15.3 grams C
Explanation: 1 mole is 6.02x10^23 atoms. We can find the moles of C in 7.675 x 10^23 atoms of C by dividing:
(7.675 x 10^23 atoms C)/(6.02x10^23 atoms C/mole) = 1.275 moles C
The molar mass of carbon is 12g/mole. So the mass of 7.675 x 10^23 atoms is (1.275 moles C)*(12 g/mole C) = 15.3 grams.
MgCl2 because it is the only option in which a metal appears with a nonmetal. In this case, the metal transfers electrons to the nonmental because the metal has a lower ionization energy.
The formula for the compounds in the reaction are as follows with the respective states
Carbon monoxide - CO (g)
hydrogen - H₂ (g)
methane - CH₄(g)
water - H₂O (l)
reaction of carbon monoxide with hydrogen gas gives rise to methane and water
the balanced chemical equation for the above reaction is as follows
CO(g) + 3H₂(g) --> CH₄(g) + H₂O(l)
Answer:
Nonmetals and nonmetals tend to form covalent bonds.
or
P and S
Explanation: