Amphiprotic compounds are able to both donate and accept a proton.
Amphiprotic compounds contain a hydrogen atom and lone pair of valence electron.
For example, HSO₃⁻ (hydrogen sulfate ion) is an amphiprotic compound.
Balanced chemical equation for reaction when HSO₃⁻ donate protons to water:
HSO₃⁻(aq) + H₂O(l) ⇄ SO₄²⁻(aq) + H₃O⁺(aq).
Ka = [SO₄²⁻] · [H₃O⁺] / [HSO₃⁻]
Balanced chemical equation for reaction when HSO₃⁻ accepts protons from water:
HSO₃⁻(aq) + H₂O(l) ⇄ H₂SO₄(aq) + OH⁻(aq).
Kb = [H₂SO₄] · [OH⁻] / [HSO₃⁻]
Water (H₂O), amino acids, hydrogen carbonate ions (HCO₃⁻) are examples of amphiprotic species.
Another example, water is an amphiprotic substance:
H₂O + HCl → H₃O⁺ + Cl⁻
H₂O + NH₃ → NH₄⁺ + OH⁻
More about amphiprotic compounds: brainly.com/question/3421406
#SPJ4
The number of liters of 3.00 M lead (II) iodide : 0.277 L
<h3>Further explanation</h3>
Reaction(balanced)
Pb(NO₃)₂(aq) + 2KI(aq) → 2KNO₃(aq) + PbI₂(s)
moles of KI = 1.66
From the equation, mol ratio of KI : PbI₂ = 2 : 1, so mol PbI₂ :

Molarity shows the number of moles of solute in every 1 liter of solute or mmol in each ml of solution

Where
M = Molarity
n = Number of moles of solute
V = Volume of solution
So the number of liters(V) of 3.00 M lead (II) iodide-PbI₂ (n=0.83, M=3):

Answer:
<h3><em>A is most likely your correct answer</em></h3>
Explanation:
A. Hills Covered with dry brush- this is most likely correct
b. Hills covered in lush grass- incorrect, because it is LUSH grass which would require lots of rain.
c. Flat lands with little grass- incorrect because grasslands DO have lots of grass.
D- incorrect because grasslands typically do NOT have rocky mountains <u>but are generally flatlands with grass</u>
<u />
<h3>I am so sorry if this is wrong, I am just using common knowledge. TREASURE EVERY MOMENT AND HAVE AN AMAZING DAY!! ;)</h3>
Answer:
kinetic to thermal. . . . .