1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kobotan [32]
2 years ago
15

Is metal denting a physical change

Physics
1 answer:
Scilla [17]2 years ago
7 0
No it is a chemical change
You might be interested in
Two isolated, concentric, conducting spherical shells have radii R1 = 0.500 m and R2 = 1.00 m, uniform charges q1=+2.00 µC and q
scZoUnD [109]

Complete Question

The diagram for this question is shown on the first uploaded image  

Answer:

a E =1.685*10^3 N/C

b E =36.69*10^3 N/C

c E = 0 N/C

d V = 6.7*10^3 V

e   V = 26.79*10^3V

f   V = 34.67 *10^3 V

g   V= 44.95*10^3 V

h    V= 44.95*10^3 V

i    V= 44.95*10^3 V

Explanation:

From the question we are given that

       The first charge q_1 = 2.00 \mu C = 2.00*10^{-6} C

       The second charge q_2 =1.00 \muC = 1.00*10^{-6}

      The first radius R_1 = 0.500m

      The second radius R_2 = 1.00m

 Generally \ Electric \ field = \frac{1}{4\pi\epsilon_0}\frac{q_1+\ q_2}{r^2}

And Potential \ Difference = \frac{1}{4\pi \epsilon_0}   [\frac{q_1 }{r}+\frac{q_2}{R_2} ]

The objective is to obtain the the magnitude of electric for different cases

And the potential difference for other cases

Considering a

                      r  = 4.00 m

           E = \frac{((2+1)*10^{-6})*8.99*10^9}{16}

                = 1.685*10^3 N/C

Considering b

           r = 0.700 m \ , R_2 > r > R_1

This implies that the electric field would be

            E = \frac{1}{4\pi \epsilon_0}\frac{q_1}{r^2}

             This because it the electric filed of the charge which is below it in distance that it would feel

            E = 8*99*10^9  \frac{2*10^{-6}}{0.4900}

               = 36.69*10^3 N/C

   Considering c

                      r  = 0.200 m

=>   r

 The electric field = 0

     This is because the both charge are above it in terms of distance so it wont feel the effect of their electric field

       Considering d

                  r  = 4.00 m

=> r > R_1 >r>R_2

Now the potential difference is

                  V =\frac{1}{4\pi \epsilon_0} \frac{q_1 + \ q_2}{r} = 8.99*10^9 * \frac{3*10^{-6}}{4} = 6.7*10^3 V

This so because the distance between the charge we are considering is further than the two charges given  

          Considering e

                       r = 1.00 m R_2 = r > R_1

                V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{1.00} \frac{1.00*10^{-6}}{1.00} ] = 26.79 *10^3 V

          Considering f

              r = 0.700 m \ , R_2 > r > R_1

                      V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.700} \frac{1.0*10^{-6}}{1.00} ] = 34.67 *10^3 V

          Considering g

             r =0.500\m , R_1 >r =R_1

   V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

          Considering h

                r =0.200\m , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

           Considering i    

   r =0\ m \ , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

8 0
3 years ago
Which of the following is not a characteristic of a creative person
Katarina [22]
<span>B.Extrinsic motivation </span>
7 0
3 years ago
Read 2 more answers
Is electricity a fuel
labwork [276]

YES, ELECTRICITY CONCERNS ENERGY WHICH IS USED AS A FUEL . IN MODERN DAY TECH, MOST MACHINES USE ELECTRICITY AS A FUEL SUCH AS THE ELECTRONIC TRAIN IN TOKYO, JAPAN.

8 0
2 years ago
Read 2 more answers
A pilot drops a bomb from a plane flying horizontally with constant velocity. When the bomb hits the ground, the horizontal loca
polet [3.4K]

Answer: The horizontal location of the plane will BE OVER THE BOMB

Explanation:

As soon as the bomb was dropped, the bomb will fall under gravity (free fall) and the location of the plane continues to increase horizontally till the bomb reaches the ground which is a falling distance to be travelled by the bomb at 9.8m/s²

8 0
3 years ago
The peregrine falcon is the world's fastest known bird and has been clocked diving downward toward its prey at constant vertical
Sergio [31]
100m / 97.2m/s = 1.0288 seconds
7 0
2 years ago
Read 2 more answers
Other questions:
  • Assume that the Styrofoam slab and the fur are both initially neutral, and that the slab charged negatively after it is rubbed w
    14·1 answer
  • Is Experience Nature or Nurture
    11·1 answer
  • At one instant, an electron (charge = –1.6 x 10–19 C) is moving in the xy plane, the components of its velocity being vx = 5.0 x
    11·1 answer
  • Kepler’s first law states that the orbits of planets are ellipses with the Sun at one ____.
    13·2 answers
  • Surface winds on Earth are primarily caused by differences in
    12·2 answers
  • A cheetah runs at a constant velocity of 7 m/s. What is it’s acceleration in m/s/s<br> PLEASE HELP
    9·1 answer
  • A wire has a length of 0.50 m and measures about 0.50 mm in its cross-sectional radius. At normal temperature, what is its resis
    7·1 answer
  • When does the moon lie between earth and sun
    12·2 answers
  • 1. A pendulum is 0.25 m long. What is the frequency of its oscillations?<br> How do you solve this
    5·1 answer
  • Why are the Soviets ahead in the race to capture the V-2 rocket and Werner von Braun?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!