Answer:
Keeping the speed fixed and decreasing the radius by a factor of 4
Explanation:
A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. The centripetal acceleration is given by :

We need to find how the "centripetal acceleration of the ball can be increased by a factor of 4"
It can be done by keeping the speed fixed and decreasing the radius by a factor of 4 such that,
R' = R/4
New centripetal acceleration will be,




So, the centripetal acceleration of the ball can be increased by a factor of 4.
Answer:
21 m
Explanation:
The motion of the frog is a uniform motion (constant speed), therefore we can find the distance travelled by using

where
d is the distance covered
v is the speed
t is the time
The frog in this problem has a speed of
v = 2.1 m/s
and therefore, after t = 10 s, the distance it covered is

Answer:

Explanation:
Firstly, when you measure the voltage across the battery, you get the emf,
E = 13.0 V
In order to proceed we have to assume that the voltmeter offers no loading effect, which is a valid assumption since it has a very high resistance.
Secondly, the wires must be uniform. So the resistance per unit length is constant (say z). Now, even though the ammeter has very little resistance it cannot be ignored as it must be of comparable value/magnitude when compared to the wires. This is can seen in the two cases when currents were measured. Following Ohm's law and the resistance of a length of wire being proportional to it's length, we should have gotten half the current when measuring with the 40 m wire with respect to the 20 m wire (
). But this is not the case.
Let the resistance of the ammeter be r
Hence, using Ohm's law we get the following 2 equations:
.......(1)
......(2)
Substituting the value of r from (2) in (1), we have,

which simplifying gives us,
(which is our required solution)
putting the value of z in either (1) or (2) gives us, r = 0.5325 
Answer:
Direction remains the same but velocity changes.
Explanation:
This tell us about the direction and magnitude of the acceleration acting on the cannonball throughout its duration of flight that its direction remains the same but its magnitude of the acceleration is continuously changing. The cannonball moves in the direction in which the cannon was fired while the velocity is highest after the fire but decreases when goes higher and when it comes back to the ground so its velocity increases against so we can say that both positive and negative acceleration occurs. Positive acceleration means increase in the magnitude of velocity whereas negative acceleration means decrease in velocity.