Observe that the given vector field is a gradient field:
Let
, so that



Integrating the first equation with respect to
, we get

Differentiating this with respect to
gives

Now differentiating
with respect to
gives

Putting everything together, we find a scalar potential function whose gradient is
,

It follows that the curl of
is 0 (i.e. the zero vector).
Answer:
water flows easier in the mountains because there is less air pressure.
Answer:
A = m³/s³ = [L]³/[T]³ = [L³T⁻³]
B = m³s = [L³T]
Explanation:
We have the equation:
V = At³ + B/t
where, the dimensions of each variable are as follows:
V = m³ = [L]³
t = s = [T]
substituting these in equation, we get:
m³ = A(s)³ + B/s
for the homogeneity of the equation:
A(s)³ = m³
<u>A = m³/s³ = [L]³/[T]³ = [L³T⁻³]</u>
Also,
B/s = m³
<u>B = m³s = [L³T]</u>