Answer:
.
Step-by-step explanation:
Probability that the car encounters a green light on the first day:
.
To meet the question's conditions, the car needs to encounter another green light on the second day. Given that the colors of the light on each day are "independent," the chance that there's a green light followed by another green light will be
.
- Condition is met on the first two days and green light on the third day:
. - Condition is met on the first three days and green light on the fourth day:
.
To meet the condition on the fifth day, there needs to be a yellow light. The probability that the condition is met on the first four days and on the fifth day will be
.
To meet the condition on the sixth day, all prior days should meet the conditions. Besides, there needs to be a red light on the sixth day. 
- Seventh day:

- Eighth day:
- Ninth day:
- Tenth day:
The question asks that the condition be met on all ten days. As a result, the probability of meeting the condition will be equal to the probability on the tenth day:
.
At the start, the tank contains
(0.02 g/L) * (1000 L) = 20 g
of chlorine. Let <em>c</em> (<em>t</em> ) denote the amount of chlorine (in grams) in the tank at time <em>t </em>.
Pure water is pumped into the tank, so no chlorine is flowing into it, but is flowing out at a rate of
(<em>c</em> (<em>t</em> )/(1000 + (10 - 25)<em>t</em> ) g/L) * (25 L/s) = 5<em>c</em> (<em>t</em> ) /(200 - 3<em>t</em> ) g/s
In case it's unclear why this is the case:
The amount of liquid in the tank at the start is 1000 L. If water is pumped in at a rate of 10 L/s, then after <em>t</em> s there will be (1000 + 10<em>t</em> ) L of liquid in the tank. But we're also removing 25 L from the tank per second, so there is a net "gain" of 10 - 25 = -15 L of liquid each second. So the volume of liquid in the tank at time <em>t</em> is (1000 - 15<em>t </em>) L. Then the concentration of chlorine per unit volume is <em>c</em> (<em>t</em> ) divided by this volume.
So the amount of chlorine in the tank changes according to

which is a linear equation. Move the non-derivative term to the left, then multiply both sides by the integrating factor 1/(200 - 5<em>t</em> )^(5/3), then integrate both sides to solve for <em>c</em> (<em>t</em> ):


![\dfrac{\mathrm d}{\mathrm dt}\left[\dfrac{c(t)}{(200-3t)^{5/3}}\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5B%5Cdfrac%7Bc%28t%29%7D%7B%28200-3t%29%5E%7B5%2F3%7D%7D%5Cright%5D%3D0)


There are 20 g of chlorine at the start, so <em>c</em> (0) = 20. Use this to solve for <em>C</em> :

![\implies\boxed{c(t)=\dfrac1{200}\sqrt[3]{\dfrac{(200-3t)^5}5}}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bc%28t%29%3D%5Cdfrac1%7B200%7D%5Csqrt%5B3%5D%7B%5Cdfrac%7B%28200-3t%29%5E5%7D5%7D%7D)
Answer:
35
Step-by-step explanation:
Since i=-1, we can rewrite the equation as 3-[4(-1)} multiplied by 6+(-1). Since
4 x-1=, 3-(-4)=7. 6-1=5, and 7x5=35.
Answer:
The Similarity of Fossils found on Continental Coasts
Step-by-step explanation:
Answer: C and d my guy becuz u have to calculate all and see answers moomoo