Answer:
<h2>no solution</h2>
Step-by-step explanation:

Answer:
YZ = XZ
Step-by-step explanation:
Perpendicular Bisector:
A perpendicular bisector of a line segment 'l' is a line that is perpendicular to the line segment 'l' and cuts the line segment 'l' into two equal parts.
Given:
1. A triangle WXY.
2. A perpendicular bisector from vertex W that intersects XY at point Z.
Conclusion based on the drawing:
a. Z is the midpoint of the line segment XY because point Z lies on the perpendicular bisector of XY.
b. Hence, XZ = YZ.
Rad15
use the pythagorean theorem on both triangles to find x
y^2 + 6^2 = 10^2
y=8
7^2 + x^2 = 8^2
x=radical 15
Answer:
<h2>
<em><u>5</u></em><em><u> </u></em><em><u>Feet</u></em></h2>
Reason:
<em>From</em><em> </em><em>the</em><em> </em><em>graph</em><em> </em><em>you</em><em> </em><em>can</em><em> </em><em>clearl</em><em>y</em><em> </em><em>see</em><em> </em><em>that</em><em> </em><em>the </em><em>i</em><em>nitial</em><em> </em><em>posi</em><em>tion</em><em> </em><em>of</em><em> </em><em>rock</em><em> </em><em>was</em><em> </em><em>5</em><em> </em><em>feet</em><em> </em><em>above </em><em>as</em><em> </em><em>compa</em><em>red</em><em> </em><em>to</em><em> </em><em>its</em><em> </em><em>final</em><em> </em><em>position</em><em> </em><em>when</em><em> </em><em>it</em><em> </em><em>was</em><em> </em><em>throw</em><em>n</em><em> </em><em>in</em><em> </em><em>water</em><em>.</em>
Answer:
and
.
Step-by-step explanation:
To this relation be a function, the horizontal coordinates can't be equal. So, let's find the value of
that makes those coordinates equal.

Using the null factor property, we have

Therefore, the given relation is not a function when
and
.