Answer:
0.00840
Explanation:
The computation of the mole fraction is as follow:
As we know that
Molar mass = Number of grams ÷ number of moles
Or
number of moles = Number of grams ÷ molar mass
Given that
Number of moles of CaI2 = 0.400
And, Molar mass of water = 18.0 g/mol
Now Number of moles of water is
= 850.0 g ÷ 18.0 g/mol
= 47.22 mol
And, Total number of moles is
= 0.400 + 47.22
= 47.62
So, Molar fraction of CaI2 is
= 0.400 ÷ 47.62
= 0.00840
Answer:
The answer is A
Explanation:
That is the only answer that even remotely resembles an ultrasound hope this answered your question.
The correct options would be
OPTIONS 1 & 2
The state which a person lives in has nothing to do with the experiment, although it would most likely make it easier to observe. Wheter they develop heart disease or not is the results of the experiment.
Ionic bond involves electrostatic attraction between oppositely charged ions.
The ions are atoms that have gained 1 or more electrons and atoms that have lost 1 or more electrons.
Answer: The type of bond that requires the give and take of electrons is
A ) ionic bond.
Answer:
5.25 moles.
Explanation:
The decomposition reaction of NaN₃ is as follows :

We need to find how many grams of N₂ produced in the process.
From the above balanced chemical reaction, we conclude that the ratio of moles of sodium azide and nitrogen gas are 2 : 3.
2 moles of sodium azide decomposes to give 3 moles of nitrogen gas. So,
3.5 moles of sodium azide decomposes to give
moles of nitrogen gas.
Hence, the number of moles produced is 5.25 moles.