Answer:
Dienes are alkenes that contain two carbon-carbon double bonds, so they have the same properties as these hydrocarbons.
In the attached file are the two reactions of dienes production.
Explanation:
Two ways to obtain dienes are as follows:
-Reaction of oxidative dehydrogenation of an alkane, is an exothermic process and occurs at lower temperatures, diene and water are formed, generating greater conversion at lower temperature levels.
-Dehydration of primary alcohols. The treatment of alcohols with acid at elevated temperatures produces dienes due to water loss. For example, heating ethanol in the presence of sulfuric acid produces ethene by the loss of a water molecule.
Answer:
0.2598 M
Explanation:
Molarity is mol/L, so we have to convert the grams to moles and the mL to L. To convert between grams and moles you need the molar mass of the compound, which is 36.46g/mol.



Round to the lowest number of significant figures = 0.2598 M
Answer:
202 g/mol
Explanation:
Let's consider the neutralization between a generic monoprotic acid and KOH.
HA + KOH → KA + H₂O
The moles of KOH that reacted are:
0.0164 L × 0.08133 mol/L = 1.33 × 10⁻³ mol
The molar ratio of HA to KOH is 1:1. Then, the moles of HA that reacted are 1.33 × 10⁻³ moles.
1.33 × 10⁻³ moles of HA have a mass of 0.2688 g. The molar mass of the acid is:
0.2688 g/1.33 × 10⁻³ mol = 202 g/mol
Answer:

Explanation:
Ba(OH)₂ + 2HCl ⟶ BaCl₂ + H₂O
V/mL: 249
c/mol·L⁻¹: 0.0443 0.285
1. Calculate the moles of Ba(OH)₂

2. Calculate the moles of HCl
The molar ratio is 2 mol HCl:1 mol Ba(OH)₂

3. Calculate the volume of HCl
