Answer:
the intensity of the sun on the other planet is a hundredth of that of the intensity of the sun on earth.
That is,
Intensity of sun on the other planet, Iₒ = (intensity of the sun on earth, Iₑ)/100
Explanation:
Let the intensity of light be represented by I
Let the distance of the star be d
I ∝ (1/d²)
I = k/d²
For the earth,
Iₑ = k/dₑ²
k = Iₑdₑ²
For the other planet, let intensity be Iₒ and distance be dₒ
Iₒ = k/dₒ²
But dₒ = 10dₑ
Iₒ = k/(10dₑ)²
Iₒ = k/100dₑ²
But k = Iₑdₑ²
Iₒ = Iₑdₑ²/100dₑ² = Iₑ/100
Iₒ = Iₑ/100
Meaning the intensity of the sun on the other planet is a hundredth of that of the intensity on earth.
Explanation:
<h2><u>Steps </u><u>:</u></h2>
- <u>Move </u><u>decimal</u><u> </u><u>from</u><u> </u><u>left </u><u>to </u><u>right</u><u> </u><u>=</u><u>0</u><u> </u><u>0</u><u>0</u><u>0</u><u>0</u><u>0</u><u>0</u><u>2</u><u>4</u><u>0</u><u>.</u><u>0</u>
- <u>Then </u><u>count </u><u>the</u><u> </u><u>numbers</u><u> </u><u>before</u><u> </u><u>decimal </u><u>and </u><u>w</u><u>rite </u><u>it </u><u>like</u><u> </u><u>this </u><u>=</u><u>2</u><u>4</u><u>0</u><u>.</u><u>0</u><u>x</u><u>1</u><u>0</u><u> </u><u>power-</u><u>9</u><u> </u>
- <u>That's</u><u> </u><u>all </u>
<u>hope</u><u> it</u><u> </u><u>help</u>
<h2><u>#</u><u>H</u><u>o</u><u>p</u><u>e</u></h2>
Lol what???? i don’t understand
Answer:
4500 N
Explanation:
When a body is moving in a circular motion it will feel an acceleration directed towards the center of the circle, this acceleration is:
a = v^2/r
where v is the velocity of the body and r is the radius of the circumference:
Therefore, a body with mass m, will feel a force f:
f = m v^2/r
Therefore we need another force to keep the body(car) from sliding, this will be given by friction, remember that friction force is given a the normal times a constant of friction mu, that is:
fs = μN = μmg
The car will not slide if f = fs, i.e.
fs = μmg = m v^2/r
That is, the magnitude of the friction force must be (at least) equal to the force due to the centripetal acceleration
fs = (1000 kg) * (30m/s)^2 / (200 m) = 4500 N