Mars.
Water exists as small amounts of ice on Mars and as water vapor. It is suspected that Mars used to have flowing water on it, but that there is none left now.
The ball will take 2.551 seconds to reach its peak position.
<h3>How much time will the ball take to land?</h3>
We must know how long the balls are in the air before we can predict where they will fall. It will take 2 seconds for both balls to touch the ground.
<h3>How quickly does a ball drop?</h3>
The falling ball travels a distance of d = 12 9.8 (m/s2) t2, with a speed of v = 9.8 (m/s2) t as a function of time. The ball travels 4.9 m in a second. The falling ball's velocity is v = -9.8 (m/s2) t j, and its position is r = (4.9 m - 12 9.8 (m/s2) t2) j as a function of time.
To know more about balls visit:-
brainly.com/question/19930452
#SPJ4
Answer:
D. The oxygen side is partially negative because electrons are pulled toward the oxygen side.
Explanation:
The water molecule is polar by the virtue of covalent bonds and the hydrogen bonds within and between its molecule.
The oxygen side is partially negative because the electrons are pulled toward the oxygen side.
Between oxygen and hydrogen that makes up the water molecule, oxygen is more electronegative.
An electronegative atom has more affinity for electrons. Since the electrons in the molecule of water is shared between hydrogen and oxygen, the more electronegative specie which is water draws the electron more to itself.
This leaves a net negative charge on the oxygen atom.
Answer:
v = 2591.83 m/s
Explanation:
Given that,
The electric field is 1.27 kV/m and the magnetic field is 0.49 T. We need to find the electron's speed if the fields are perpendicular to each other. The magnetic force is balanced by the electric force such that,

So, the speed of the electron is 2591.83 m/s.