Answer:
As we keep on increasing the radius the value of the gravitation force of attraction decreases and as we decrease the radius the gravitation force increases.
Explanation:
Like the coulombs law of electrostatics, the law of gravitation also depends inversely on the square of the value of r. Therefore, as we keep on increasing the value of r the value of the gravitation force decreases and as we decrease the value of the r the value of gravitation force increases.
Gravitation Force=
Coulombs's Law= 
A pendulum is probably the most common showing of this example. As the pendulum swings down, it converts its potential energy (height) into kinetic energy (velocity). At the lowest point the kinetic energy is the highest and the potential is the lowest. At the highest point in its swing the velocity is zero so the kinetic energy is zero and the potential energy is at a maximum (greatest height).
Area=side^2=4^2=16cm^2=0.0016m^2



Answer:

Explanation:
Given that,
The mass of a Moon, 
The mass of the Earth, 
The moon's mean orbit distance around the earth is, 
We need to find the gravitational force exerted on the moon by the Earth.
The formula of gravitational force is given by :

So, the required force is
.
Answer:
Low satellite has high orbital velocity
Explanation:
let v be the orbital speed of the satellite orbiting at a height h is given by

where, M be the mass of planet, r be the radius of planet and h be the height of planet from the surface of planet.
here we observe that more be the height lesser be the orbital velocity.
So, a satellite which is at low height has high orbital velocity.