1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Georgia [21]
3 years ago
14

Three 10-cm-long rods form an equilateral triangle. Two of the rods are charged to + 19 nC, the third to - 19 nC.What is the ele

ctric field strength at the center of the triangle?
Physics
1 answer:
Sveta_85 [38]3 years ago
5 0
<span>We calculate the electric field as follows:
r = </span>√<span>(3)/6 x 19 cm = .05484 m 
The angle for the triangle would be 30 on each side.
tan(30) = r/(L/2) 

E' = kQ/{r*sqrt[(L/2)^2 + r^2]} = (8.99e9 x 15e-9) / {.05484 * sqrt[(.19/2)^2 + .003]}
</span>E' <span>= 22413 N/C
The value above is the electric field strength for a single rod at the center. 

|E'| = 22413 N/C 
E = 2|E'|sin(30) + |E'| = 49000 N/C</span>
You might be interested in
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
A beam of electrons passes through a single slit, and a beam of protons passes through a second, but identical, slit. The electr
ryzh [129]

Answer:

(b) The electrons, because they have the smaller momentum and, hence, the larger de Broglie wavelength

Explanation:

de Broglie wavelength λ = h / m v

Since both electrons and protons have same velocity , momentum mv will be less for electrons because mass of electron is less .

for electron , momentum is less so  . Therefore de Broglie wavelength λ will be more for electrons .

Amount of diffraction that is angle of diffraction is proportional to λ

Therefore electrons having greater de Broglie wavelength will show greater diffraction.

7 0
3 years ago
• A plastic bag filled with air has a volume of
ratelena [41]

Answer:

The change in the mass of box = 0.01 kg

Volume of air in the polythene bag = Volume of air in the rigid box

Therefore, Volume of air in the box = 0.008 m^3

Now, Density = Mass/ Volume

=> Density = 0.01 / 0.008 = 1.25 Kg / m^3

Explanation:

I looked it up

8 0
2 years ago
An electron (q=-1.602×10-19C) is placed .03m away from spherical object with a net charge of -7.2 C.
vovangra [49]

Answer:

Explanation:

electric field at the location of electron

= 9 x 10⁹ x 7.2 / .03²

= 72 x 10¹² N/C

force on electron = electric field x charge on electron

= 72 x 10¹² x 1.6 x 10⁻¹⁹

= 115.2 x 10⁻⁷ N .

C )

work done = charge on electron x potential difference at two points

potential at .03 m

= 9 x 10⁹ x 7.2 / .03

= 2.16 x 10¹² V

potential at .001 m

= 9 x 10⁹ x 7.2 / .001

= 64.8 x 10¹² V

potential difference = (64.8 - 2.16 )x 10¹² V

= 62.64 x 10¹² V  .

work done = 62.64 x 10¹² x 1.6 x 10⁻¹⁹

= 100.224 x 10⁻⁷ J .

D )

There will be no change in the magnitude of force on positron except that the direction of force will be reversed . In case of electron , there will be repulsion and in case of positron , there will be attraction .

Work done in case of electron will be positive and work done in case of positron will be negative .

electric field due to charge will be same in both the cases .

8 0
3 years ago
What are generated at transform fault plate boundaries?
tankabanditka [31]

Answer: The Earth's layer, which has the covering and layer, is made of a progression of things, or structural plates, that creep after some time. Along these lines, at intersecting limits, mainland outside is made and maritime covering is devastated. 2 plates slippy past each other structures a redesign plate limit.

5 0
3 years ago
Other questions:
  • When a person jumps up he or she is able to come down because of what?​
    12·2 answers
  • How much would you weigh on an imaginary planet that has no gravitational force?<br><br>​
    7·1 answer
  • A net force of 15 N is applied to a cart with a mass of 2.1 kg. a. What is the acceleration of the cart? b. How long will it tak
    5·1 answer
  • Acoustics is the study and application of how wildlife navigates at night. true false
    11·1 answer
  • In an oscillating L C circuit, the maximum charge on the capacitor is 1.5 × 10 − 6 C and the maximum current through the inducto
    7·1 answer
  • A ramp is used to load furniture onto a moving truck. The person does 1240 J of work pushing
    14·1 answer
  • The charge per unit length on a long, straight filament is -92.0 μC/m. Find the electric field 10.0 cm above the filament.
    12·1 answer
  • A.
    15·1 answer
  • What is the differece between force and motion?​
    11·2 answers
  • If the electric potential in a region is given by v(x)=7/x2 the x component of the electric field in that region is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!