1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PilotLPTM [1.2K]
3 years ago
15

Which of the following is the best example of kinetic energy being transformed into potential energy

Physics
2 answers:
poizon [28]3 years ago
3 0

A pendulum is probably the most common showing of this example. As the pendulum swings down, it converts its potential energy (height) into kinetic energy (velocity). At the lowest point the kinetic energy is the highest and the potential is the lowest. At the highest point in its swing the velocity is zero so the kinetic energy is zero and the potential energy is at a maximum (greatest height).

photoshop1234 [79]3 years ago
3 0

Answer:

kenetic enery

Explanation:

You might be interested in
Given the thermochemical equations X2+3Y2⟶2XY3ΔH1=−370 kJ X2+2Z2⟶2XZ2ΔH2=−120 kJ 2Y2+Z2⟶2Y2ZΔH3=−270 kJ Calculate the change in
Alchen [17]

Answer : The change in enthalpy of the reaction is, -310 kJ

According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.

According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.

The given main reaction is,

4XY_3+7Z_2\rightarrow 6Y_2Z+4XZ_2    \Delta H=?

The intermediate balanced chemical reaction will be,

(1) X_2+3Y_2\rightarrow 2XY_3     \Delta H_1=-370kJ

(2) X_2+2Z_2\rightarrow 2XZ_2    \Delta H_2=-120kJ

(3) 2Y_2+Z_2\rightarrow 2Y_2Z    \Delta H_3=-270kJ

Now we will reverse the reaction 1 and multiply reaction 1 by 2, reaction 2 by 2 and reaction 3 by 3 then adding all the equations, we get :

(1) 4XY_3\rightarrow 2X_2+6Y_2     \Delta H_1=2\times (+370kJ)=740kJ

(2) 2X_2+4Z_2\rightarrow 4XZ_2    \Delta H_2=2\times (-120kJ)=-240kJ

(3) 6Y_2+3Z_2\rightarrow 6Y_2Z    \Delta H_3=3\times (-270kJ)=-810kJ

The expression for enthalpy of formation of CH_4 will be,

\Delta H=\Delta H_1+\Delta H_2+\Delta H_3

\Delta H=(+740kJ)+(-240kJ)+(-810kJ)

\Delta H=-310kJ

Therefore, the change in enthalpy of the reaction is, -310 kJ

5 0
3 years ago
The lower atmosphere is mostly warmed by radiated heat from Earth's surface. However, water heats up and cools down more slowly
JulsSmile [24]
The answer is B. On a sunny day, the air over a lake will be cooler than the air over the bordering land.
6 0
3 years ago
Read 2 more answers
In the system illustrated by the diagram, the magnetic field is increasing. In which
Black_prince [1.1K]

The emf will be induced in anti-clockwise direction.

<u>Explanation</u>

Lenz's law tells us the direction us the direction that the current will flow. It states that the direction is always such that it will oppose the change in flux which produced it. This means that any magnetic field produced by an induced current will be in opposite direction to the change in the original field.

To find the direction of emf, Stretch the forefinger, middle finger and the thumb of the right hand mutually perpendicular to each other. If the force finger points in the direction of the magnetic field, the thumb gives the direction of the motion of the conductor then the middle finger gives the direction of the induced current.

3 0
3 years ago
Weight on planet Mars ​
Sunny_sXe [5.5K]

Mars: 0.38

weight = mass x surface gravity

multiplying your weight on Earth by the number above will give you your weight on the surface of Mars

If you weigh 150 pounds (68 kg.) on Earth, you would weigh 57 lbs. (26 kg.) on Mars

5 0
3 years ago
Read 2 more answers
Rod AB has a diameter of 200mm and rod BC has a diameter of 150mm. Find the required temperature increase to close the gap at C.
Leni [432]

Answer:

T&=\frac{\sigma_{AB}+\sigma_{BC}}{2\alpha E}

Explanation:

The given data :-

  • Diameter of rod AB ( d₁ ) = 200 mm.
  • Diameter of rod BC ( d₂ ) = 150 mm.
  • The linear co-efficient of thermal expansion of copper ( ∝ ) = 1.6 × 10⁻⁶ /°C
  • The young's modulus of elasticity of copper ( E ) = 120 GPa = 120 × 10³ MPa.
  • Consider the required temperature increase to close the gap at C = T °C
  • Consider the change in length of the rod = бL

Solution :-

\begin{aligned}\sum H& =0\\-R_A+R_C&=0\\R_A&=R_C\\R_A&=R\\R_C&=R\\R_{A}&=\text{reaction\:force\:at\:A}\\R_{C}&=\text{reaction\:force\:at\:C}\\\sigma_{AB}&=\text{axial\:stress\:at\:A}\\\sigma_{BC}&=\text{axial\:stress\:at\:B}\\\sigma_{AB}&=\frac{R}{A_{A}}\\&=\frac{R_{A}}{A_{A}}\\\sigma_{BC}&=\frac{R_{B}}{A_{B}}\\&=\frac{R}{A_{B}}\\\frac{\sigma_{AB}}{\sigma_{BC}}&=\frac{A_{B}}{A_{B}}\\&=\frac{\frac{\pi}{4}\cdot 150^{2}}{\frac{\pi}{4}\cdot 200^{2}}\\&=\frac{9}{16}\end{aligned}

\begin{aligned}\delta L&= (\delta L _{thermal} +\delta L_{axial})_{AB} + ( \delta L _{thermal} +\delta L_{axial})_{BC}\\0& = (\delta L _{thermal} +\delta L_{axial})_{AB} + ( \delta L _{thermal} +\delta L_{axial})_{BC}\\&=\left[\alpha\:T\:L+\left(\frac{-RL}{AE}\right)\right]_{AB}+\left[\alpha\:T\:L+\left(\frac{-RL}{AE}\right)\right]_{BC}\\&=2\:\alpha\:T\:L-\frac{L}{E}(\sigma_{AB}+\sigma_{BC})\\T&=\frac{\sigma_{AB}+\sigma_{BC}}{2\alpha E}\end{aligned}

5 0
3 years ago
Other questions:
  • A uniform rod of mass m has very tiny lead balls, each of mass m, welded to each end. If the rod hangs in empty space, and a for
    15·1 answer
  • Signal far enough ahead so other drivers in your vicinity can make adjustments to your change in speed and ___________.
    7·1 answer
  • An example of vector quantity thats not a force
    6·1 answer
  • Running longer would be an example of how you might improve your running performance
    14·1 answer
  • A bigger pushing force does make the brick slide across the table.write down one thing that the sliding brick will do to the sur
    7·2 answers
  • 1. The activation energy to form interstitial carbon in iron at room temperature is around 0.77 eV, and in vanadium at room temp
    7·1 answer
  • Two gliders collide on a frictionless air track that is aligned along the x axis. Glider A has an initial velocity v0 and glider
    14·1 answer
  • One kg of air contained in a piston-cylinder assembly undergoes a process from an initial state whereT1=300K,v1=0.8m3/kg, to a f
    7·1 answer
  • The graph depicts the velocity and times of Elan and Anna during a race.
    13·2 answers
  • REAL ANSWERS ONLY PLS
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!