15.7 feet
and you are welcome
Answer:
part A) The scale factor of the sides (small to large) is 1/2
part B) Te ratio of the areas (small to large) is 1/4
part C) see the explanation
Step-by-step explanation:
Part A) Determine the scale factor of the sides (small to large).
we know that
The dilation is a non rigid transformation that produce similar figures
If two figures are similar, then the ratio of its corresponding sides is proportional
so
Let
z ----> the scale factor

The scale factor is equal to

substitute

simplify

Part B) What is the ratio of the areas (small to large)?
<em>Area of the small triangle</em>

<em>Area of the large triangle</em>

ratio of the areas (small to large)

Part C) Write a generalization about the ratio of the sides and the ratio of the areas of similar figures
In similar figures the ratio of its corresponding sides is proportional and this ratio is called the scale factor
In similar figures the ratio of its areas is equal to the scale factor squared
Answer: FIRST OPTION
Step-by-step explanation:
<h3>
The missing picture is attached.</h3>
By definition, given a Quadratic equation in the form:

Where "a", "b" and "c" are numerical coefficients and "x" is the unknown variable, you caN use the Quadratic Formula to solve it.
The Quadratic Formula is the following:

In this case, the exercise gives you this Quadratic equation:

You can identify that the numerical coefficients are:

Therefore, you can substitute values into the Quadratic formula shown above:

You can identify that the equation that shows the Quadratic formula used correctly to solve the Quadratic equation given in the exercise for "x", is the one shown in the First option.
Answer:
x=3
Step-by-step explanation:
Step 1: Factor left side of equation.
(2x−1)(x−3)=0
Step 2: Set factors equal to 0.
x−3=0
ANSWER:
x=3
Step-by-step explanation:
t/-3,2 < 5
t > 5 × -3,2
t >-16