Answer:
inductive reasoning
Explanation:
Inductive reasoning is one of the type of reasoning method in which generalized consequences are derived from limited observations. By observing few data, general conclusions are drawn. The conclusions drawn are false in inductive reasoning. In the given situation, the conclusion drawn by the elevator repairer has been drawn by inductive reasoning. His observation of some cables led him to draw the conclusion about all the cables. The result of the reasoning is false.
Answer:
“An OSHA 300 log is where companies record the injuries that occur at the workplace,” said Luna. “By law, they have to report all the injuries to OSHA.” The OSHA law gives workers and their unions the right to have access to injury logs.
Answer:
See explanation
Explanation:
Given:
Initial pressure,
p
1
=
15
psia
Initial temperature,
T
1
=
80
∘
F
Final temperature,
T
2
=
200
∘
F
Find the gas constant and specific heat for carbon dioxide from the Properties Table of Ideal Gases.
R
=
0.04513
Btu/lbm.R
C
v
=
0.158
Btu/lbm.R
Find the work done during the isobaric process.
w
1
−
2
=
p
(
v
2
−
v
1
)
=
R
(
T
2
−
T
1
)
=
0.04513
(
200
−
80
)
w
1
−
2
=
5.4156
Btu/lbm
Find the change in internal energy during process.
Δ
u
1
−
2
=
C
v
(
T
2
−
T
1
)
=
0.158
(
200
−
80
)
=
18.96
Btu/lbm
Find the heat transfer during the process using the first law of thermodynamics.
q
1
−
2
=
w
1
−
2
+
Δ
u
1
−
2
=
5.4156
+
18.96
q
1
−
2
=
24.38
Btu/lbm
Answer:
hello below is missing piece of the complete question
minimum size = 0.3 cm
answer : 0.247 N/mm2
Explanation:
Given data :
section span : 10.9 and 13.4 cm
minimum load applied evenly to the top of span : 13 N
maximum load for each member ; 4.5 N
lets take each member to be 4.2 cm
Determine the max value of P before truss fails
Taking average value of section span ≈ 12 cm
Given minimum load distributed evenly on top of section span = 13 N
we will calculate the value of by applying this formula
=
= 1.56 * 10^-5
next we will consider section ; 4.2 cm * 0.3 cm
hence Z (section modulus ) = BD^2 / 6
= ( 0.042 * 0.003^2 ) / 6 = 6.3*10^-8
Finally the max value of P( stress ) before the truss fails
= M/Z = ( 1.56 * 10^-5 ) / ( 6.3*10^-8 )
= 0.247 N/mm2
Answer:
1st part: Section W18X76 is adequate
2nd part: Section W21X62 is adequate
Explanation:
See the attached file for the calculation