Answer:
A = 3W² + W + 1/8πW²
Step-by-step explanation:
rectangular window is L x W
semicircle is 1/2 πr²
r = 1/2 W
L = 3W + 1
A = W(3W + 1) + 1/2 π(1/2W)²
A = 3W² + W + 1/8πW²
Let p(x) be a polynomial, and suppose that a is any real
number. Prove that
lim x→a p(x) = p(a) .
Solution. Notice that
2(−1)4 − 3(−1)3 − 4(−1)2 − (−1) − 1 = 1 .
So x − (−1) must divide 2x^4 − 3x^3 − 4x^2 − x − 2. Do polynomial
long division to get 2x^4 − 3x^3 − 4x^2 – x – 2 / (x − (−1)) = 2x^3 − 5x^2 + x –
2.
Let ε > 0. Set δ = min{ ε/40 , 1}. Let x be a real number
such that 0 < |x−(−1)| < δ. Then |x + 1| < ε/40 . Also, |x + 1| <
1, so −2 < x < 0. In particular |x| < 2. So
|2x^3 − 5x^2 + x − 2| ≤ |2x^3 | + | − 5x^2 | + |x| + | − 2|
= 2|x|^3 + 5|x|^2 + |x| + 2
< 2(2)^3 + 5(2)^2 + (2) + 2
= 40
Thus, |2x^4 − 3x^3 − 4x^2 − x − 2| = |x + 1| · |2x^3 − 5x^2
+ x − 2| < ε/40 · 40 = ε.
Value of expression
is 22 .
<u>Step-by-step explanation:</u>
Here we have the following expression to solve :
8÷2*5+(6-4)
⇒ 
⇒
But 8 = 4(2) , So
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Therefore, Value of expression
is 22 .
Given :
Two equations :
-8x + 3y = -17 ....1)
3x - y = 7 ....2)
To Find :
The solution of the system.
Solution :
Multiplying equation 2) by 3 and adding with equation 1), we get :
(-8x + 3y) + 3(3x - y) = -17 + 21
x = 4
Putting above value of x equation 2) we get :
12 - y = 7
y = 5
Therefore, solution of system is ( 4,5 ).
Answer:
12
Step-by-step explanation:
5 + b ÷ (11 - 9)
Substitute b = 14
5 + 14 ÷ (11 - 9)
Work the order of operations from left to right
Since there are no exponents, parentheses first
5 + 14 ÷ (11 - 9)
5+14 ÷ 2
Then division
5+7
Then addition
12