A mature thunderstorm will contain both updraft and downdrafts. The given statement is true.
When the cumulus cloud becomes very large, the water in it becomes large and heavy. Raindrops start to fall through the cloud when the rising air can no longer hold them up. Meanwhile, cool dry air starts to enter the cloud. Because cool air is heavier than warm air, it starts to descend in the cloud (known as a downdraft). The downdraft pulls the heavy water downward, making rain.
This cloud has become a cumulonimbus cloud because it has an updraft, a downdraft, and rain. Thunder and lightning start to occur, as well as heavy rain. The cumulonimbus is now a thunderstorm cell.
Answer:
In free fall, mass is not relevant and there's no air resistance, so the acceleration the object is experimenting will be equal to the gravity exerted. If the object is falling on our planet, the value of gravity is approximately 9.81ms2 .
Answer:
East component is: 18.64 m/s
Explanation:
If the resultant is 32.5 m/s directed 35 degrees east of north, then we use the sin(35) projection to find the east component of the velocity:
East component = 32.5 m/s * sin(35) = 18.64 m/s
Answer:
Acceleration is the change in velocity over the change in time = Δv/Δt. To do these problems, you need to find out how much the speed changed and over what period of time it changed.
Snail 1 changes from 4 cm/min to 7 cm/min in 3 minutes. Subtract the starting velocity (4 cm/min) from the ending velocity (7 cm/min) then divide by the time (3 min):
Snail 1 = (7 cm/min. - 4 cm/min)/(3 minutes) = ? (remember to put down the units)
Snail 2 changed from 7 cm/min. down to 1 cm/min. in 3 minutes
Snail 2 = (1 cm/min. - 7 cm/min.)/(3 min.) = ? (note that the acceleration is negative when you slow down)
I hope this helps you
Answer:
Explanation:
T = 2π
(T / 2π)² = L/g
g = 4π²L/T²
g = 4π²(0.75000)/(1.7357)²
g = 9.82814766...
g = 9.8281 m/s²