1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tester [92]
3 years ago
14

Some plants disperse their seeds when the fruit splits and contracts, propelling the seeds through the air. The trajectory of th

ese seeds can be determined with a high-speed camera. In an experiment on one type of plant, seeds are projected at 20 cm above ground level with initial speeds between 2.3 m/s and 4.6 m/s. The launch angle is measured from the horizontal, with + 90° corresponding to an initial velocity straight up and – 90° straight down.
If a seed is launched at an angle of 0° with the maximum initial speed, how far from the plant will it land? Ignore air resistance, and assume that the ground is flat. (a) 20 cm; (b) 93 cm; (c) 2.2 m; (d) 4.6 m.

Physics
2 answers:
Paraphin [41]3 years ago
8 0

Answer:

The Correct answer is C

2.2m

Explanation:

The seeds launched obey a projectile motion.

Since it was launched from an height,

Rmax = (u/g)sqrt(u^2 + 2gH)

For seed1, u = 2.3m/s H = 20cm = 0.2m, g = 9.8m/s.

Rmax = (2.3/9.8)*sqrt(2.3^2 + 2*9.8*0.2)

Rmax = 0.701m

For seed2, u = 4.6m/s H = 20cm = 0.2m, g = 9.8m/s.

Rmax = (4.6/9.8)*sqrt(4.6^2 + 2*9.8*0.2)

Rmax = 2.205m

Therefore, the seed launched with maximum initial speed of 4.6m/s, will land at 2.2m from the plant.

Anton [14]3 years ago
6 0

Answer:

Option B, 93 cm

Explanation:

An diagram of the seed's motion is attached to this solution.

This is very close to a projectile motion question. And the quantity to be calculated, how far along the grant a seed released would travel is called the Range.

And this would be obtained from the equations of motion,

First of, the height of the plant is related to some quantities of the motion with this relation.

H = u(y) t + 0.5g(t^2)

U(y) = initial vertical component of velocity = 0 m/s, H = height at which motion began, = 20cm = 0.2 m

That means t = √(2H/g)

The horizontal distance covered, R,

R = u(x) t + 0.5g(t^2) = u(x) t (the second part of the equation goes to zero as the vertical component of the acceleration of this motion is 0)

(substituting the t = √(2H/g) derived from above

R = u(x) √(2H/g)

Where u(x) = the initial horizontal component of the bomb's velocity = maximum initial speed, that is, 4.6 m/s, H = vertical height at which the seed was released = 20 cm = 0.2 m, g = acceleration due to gravity = 9.8 m/s2

R = 4.6 √(2×0.2/9.8) = 0.929 m = 0.93 m = 93 cm. Option B.

QED!

You might be interested in
In a Little League baseball game, the 145 g ball enters the strike zone with a speed of 17.0 m/s . The batter hits the ball, and
VMariaS [17]

Hi there!

Impulse = Change in momentum

I = Δp = mΔv = m(vf - vi)

Where:

m = mass of object (kg)

vf = final velocity (m/s)

vi = initial velocity (m/s)

Begin by converting grams to kilograms:

1 kg = 1000g ⇒ 145g = .145kg

Now, plug in the given values. Remember to assign directions since velocity is a vector. Let the initial direction be positive and the opposite be negative.

I = (.145)(-20 - 17) = -5.365 Ns

The magnitude is the absolute value, so:

|-5.365| = 5.365 Ns

4 0
2 years ago
An athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 60 cm long and has a mass of 3.8 kg, with the center of
Serggg [28]

Answer:

(a) τ = 26.58 Nm

(b) τ = 18.79 Nm

Explanation:

(a)

First we find the torque due to the ball in hand:

τ₁ = F₁d₁

where,

τ₁ = Torque due to ball in hand = ?

F₁ = Force due to ball in hand = m₁g = (3 kg)(9.8 m/s²) = 29.4 N

d₁ = perpendicular distance between ball and shoulder = 60 cm = 0.6 m

τ₁ = (29.4 N)(0.6 m)

τ₁ = 17.64 Nm

Now, we calculate the torque due to the his arm:

τ₁ = F₁d₁

where,

τ₂ = Torque due to arm = ?

F₂ = Force due to arm = m₂g = (3.8 kg)(9.8 m/s²) = 37.24 N

d₂ = perpendicular distance between center of mass and shoulder = 40% of 60 cm = (0.4)(60 cm) = 24 cm = 0.24 m

τ₂ = (37.24 N)(0.24 m)

τ₂ = 8.94 Nm

Since, both torques have same direction. Therefore, total torque will be:

τ = τ₁ + τ₂

τ = 17.64 Nm + 8.94 Nm

<u>τ = 26.58 Nm</u>

<u></u>

(b)

Now, the arm is at 45° below horizontal line.

First we find the torque due to the ball in hand:

τ₁ = F₁d₁

where,

τ₁ = Torque due to ball in hand = ?

F₁ = Force due to ball in hand = m₁g = (3 kg)(9.8 m/s²) = 29.4 N

42.42 cm = 0.4242 m

τ₁ = (29.4 N)(0.4242 m)

τ₁ = 12.47 Nm

Now, we calculate the torque due to the his arm:

τ₁ = F₁d₁

where,

τ₂ = Torque due to arm = ?

F₂ = Force due to arm = m₂g = (3.8 kg)(9.8 m/s²) = 37.24 N

d₂ = perpendicular distance between center of mass and shoulder = 40% of (60 cm)(Cos 45°) = (0.4)(42.42 cm) = 16.96 cm = 0.1696 m

τ₂ = (37.24 N)(0.1696 m)

τ₂ = 6.32 Nm

Since, both torques have same direction. Therefore, total torque will be:

τ = τ₁ + τ₂

τ = 12.47 Nm + 6.32 Nm

<u>τ = 18.79 Nm</u>

3 0
2 years ago
Determina el tamaño de la arista de un cubo hecho de plata, cuya masa es de 10.49 kg.
Sidana [21]

Answer:

88.2 N

Explanation:

Datos

Lcubo = 10 cm = 0.1 m

Vcubo = Vfluido desalojado= 0.1 m x 0.1 m x 0.1 m = 10-3 m

mcubo = 10 kg

dfluido = 1000 kg/m3

g = 9.8 m/s2  

Sabemos que el peso aparente de un cuerpo que se sumerge en un fluido es:

Paparente=Preal−Pfluido

Teniendo en cuenta que:

Preal = mcubo⋅gPfluido=E= dfluido⋅Vfluido⋅g

Como el cuerpo se sumerge completamente en el fluido, el volumen de fluido desalojado es exactamente el volumen del cubo. Por lo tanto si sustituimos los datos que nos proporcionan en el enunciado en la primera ecuación:

Paparente=mcubo⋅g−dfluido⋅Vfluido⋅g ⇒Paparente=10 kg ⋅9.8 m/s2 − 1000 kg/m3 ⋅10−3 m ⋅9.8 m/s2 ⇒Paparente = 88.2 N

7 0
2 years ago
As the train in the image moves to the right how does the train horn sound to person a?
alina1380 [7]

Answer:

Explanation:

Person A's velocity relative to the train is 0.  Therefore, the pitch of the horn will not change.

3 0
2 years ago
Read 2 more answers
The mass of an atom is
suter [353]

Answer:

Atomic mass is defined as the number of protons and neutrons in an atom, where each proton and neutron has a mass of approximately 1 amu (1.0073 and 1.0087, respectively). The electrons within an atom are so miniscule compared to protons and neutrons that their mass is negligible.

I hope this is the answer you were looking for :D

4 0
2 years ago
Read 2 more answers
Other questions:
  • A beam of red light is made to pass through two slits that are 3.55 E-3 meters apart. On a screen 2.25 meters away from the slit
    14·1 answer
  • What is the speed of a ball thrown from 1.2m above the ground if it travels 13.7m horizontally before hitting the ground
    10·1 answer
  • Which of the advantages to social media as a new media could also be viewed as a disadvantage
    10·2 answers
  • Four heavy elements (A, B, C, and D) will fission when bombarded by neutrons. In addition to fissioning into two smaller element
    8·1 answer
  • The uncertainty in position of a proton confined to the nucleus of an atom is roughly the diameter of the nucleus. If this diame
    6·1 answer
  • When working with electric charges, what symbol is used in equations to represent the electric field of an object?
    15·2 answers
  • Which of the following would most likely produce the strongest magnetic
    10·1 answer
  • How do charging and discharging compare? How can charging go unnoticed,
    7·1 answer
  • A car slows down from 27.7 m/s <br> to 10.9 m/s in 2.37 s. <br> What is its acceleration?
    13·2 answers
  • A 30 ohm resistor and a 20 ohm resistor are
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!