1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tester [92]
3 years ago
14

Some plants disperse their seeds when the fruit splits and contracts, propelling the seeds through the air. The trajectory of th

ese seeds can be determined with a high-speed camera. In an experiment on one type of plant, seeds are projected at 20 cm above ground level with initial speeds between 2.3 m/s and 4.6 m/s. The launch angle is measured from the horizontal, with + 90° corresponding to an initial velocity straight up and – 90° straight down.
If a seed is launched at an angle of 0° with the maximum initial speed, how far from the plant will it land? Ignore air resistance, and assume that the ground is flat. (a) 20 cm; (b) 93 cm; (c) 2.2 m; (d) 4.6 m.

Physics
2 answers:
Paraphin [41]3 years ago
8 0

Answer:

The Correct answer is C

2.2m

Explanation:

The seeds launched obey a projectile motion.

Since it was launched from an height,

Rmax = (u/g)sqrt(u^2 + 2gH)

For seed1, u = 2.3m/s H = 20cm = 0.2m, g = 9.8m/s.

Rmax = (2.3/9.8)*sqrt(2.3^2 + 2*9.8*0.2)

Rmax = 0.701m

For seed2, u = 4.6m/s H = 20cm = 0.2m, g = 9.8m/s.

Rmax = (4.6/9.8)*sqrt(4.6^2 + 2*9.8*0.2)

Rmax = 2.205m

Therefore, the seed launched with maximum initial speed of 4.6m/s, will land at 2.2m from the plant.

Anton [14]3 years ago
6 0

Answer:

Option B, 93 cm

Explanation:

An diagram of the seed's motion is attached to this solution.

This is very close to a projectile motion question. And the quantity to be calculated, how far along the grant a seed released would travel is called the Range.

And this would be obtained from the equations of motion,

First of, the height of the plant is related to some quantities of the motion with this relation.

H = u(y) t + 0.5g(t^2)

U(y) = initial vertical component of velocity = 0 m/s, H = height at which motion began, = 20cm = 0.2 m

That means t = √(2H/g)

The horizontal distance covered, R,

R = u(x) t + 0.5g(t^2) = u(x) t (the second part of the equation goes to zero as the vertical component of the acceleration of this motion is 0)

(substituting the t = √(2H/g) derived from above

R = u(x) √(2H/g)

Where u(x) = the initial horizontal component of the bomb's velocity = maximum initial speed, that is, 4.6 m/s, H = vertical height at which the seed was released = 20 cm = 0.2 m, g = acceleration due to gravity = 9.8 m/s2

R = 4.6 √(2×0.2/9.8) = 0.929 m = 0.93 m = 93 cm. Option B.

QED!

You might be interested in
A. How long does it take light to travel through a 3.0-mm-thick piece of window glass?
hodyreva [135]

Answer:

a) 1.517\times10^{-11} s

b) 3.41 mm

Explanation:

a)

We take the speed of light, c = 3.0\times10^8 m/s and the refractive index of glass as 1.517.

Speed = distance/time

Time = distance/speed

Refractive index, n = speed of light in vacuum / speed of light in medium

n=\dfrac{c}{s}

s=\dfrac{c}{n}

t=\dfrac{d}{c/n}

t=\dfrac{dn}{c}

t=\dfrac{3\times10^{-3}\times1.517}{3.0\times10^8}

t=1.517\times10^{-11}

b)

We take the refractive index of water as 1.333.

Speed in water = speed in vacuum / refractive index of water

Distance = speed * time

d=s\times t

d=\dfrac{c}{n_w}\times \dfrac{3\times10^{-3}\times1.517}{c}

d=\dfrac{3\times10^{-3}\times 1.517}{1.333}

d = 3.41 mm

6 0
3 years ago
The amount of kinetic energy an object has depends upon which of the following factors? I. the object's velocity II. the object'
harina [27]

1.) The object's Velocity

Faster it goes, more kinetic energy it has

8 0
3 years ago
How are an element's abundance in nature and percent composition related?
Tatiana [17]
Because they both have to do with chemistry
4 0
3 years ago
A boy who is riding his bicycle, moves with an initial velocity of 5 m/s. ten second later, he is moving at 15 m/s. what is his
pantera1 [17]

\Large {{ \sf {Question :}}}

<h3>A boy who is riding his bicycle, moves with an initial velocity of 5 m/s. Ten second later, he is moving at 15 m/s. What is his acceleration?</h3>

\Large {{ \sf {Given :}}}

<h3>Initial Velocity (<em>u</em>) - 5 m/s</h3><h3>Final Velocity (<em>v</em>) - 15 m/s</h3><h3>Time (<em>t</em>) - 10 sec</h3>

\Large {{ \sf {Formulae  :}}}

<h3>If the velocity of an object changes from an initial value <em>u </em>to the final value <em>v </em>in time <em>t,</em><em> </em>the acceleration <em>a</em> is, </h3><h3>a \:  =  \frac{v - u}{t}</h3><h3>\Large {{ \sf {Step-by-step explanation :}}}</h3>

a \:  =  \frac{v - u}{t}  \\ or \:  \: a =  \frac{(15 - 5)}{10} m \: s^{ - 2}  \\ or \:  \: a \:  =  \frac{10}{10}m \: s^{ - 2} \\ or \:  \: a = 1m \: s^{ - 2}

\Large {{ \sf {Answer :}}}

<h3>His acceleration is </h3><h3>1m \: s^{ - 2}</h3><h3 /><h3 />
5 0
3 years ago
Time running out plzz hurry!!!!!!
Vesnalui [34]
I think you would hear a lower pitch
3 0
3 years ago
Read 2 more answers
Other questions:
  • Where is each subatomic particle is found in an atom
    6·1 answer
  • Which of the following ways is usable energy lost?
    14·2 answers
  • Just wondering if I did this right
    12·1 answer
  • Which example best describes a restoring force?
    7·1 answer
  • The most frequent compulsion that is exhibited in obsessive-compulsive disorder is
    13·1 answer
  • A ball with an initial velocity of 25 m/s is subject to an acceleration of -9.8m/s^2 how high does it go before coming to a mome
    8·1 answer
  • Q.Solve the following circuit find total resistance RT. Also find value of voltage across resister RC.
    9·1 answer
  • Please help! i will give brainliest :)
    6·1 answer
  • What is the phenomenon that can occur if the percentage of oxygen is higher in the air?
    10·2 answers
  • Diverse crops can become vulnerable to pests, disease, and climate change. Which part of this statement is false?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!