Answer:
D) shrivel up, since the atmosphere exerts more force on the can as it cools.
Explanation:
As the water in the can is boiled the can gets heated up and contains hot vapour and gases which are rare in density and are in their expanded state. In this state when the can is sealed tightly such that no air leaks in or out of the can. When the temperature of the can drops, the gases shrink in volume and the pressure inside the can become less than the pressure of the atmosphere which leads to shriveling of the can.
Answer:
I disagree
Explanation:
I think the students claim is wrong because according to Newton's First Law an object that is in motion stays in motion unless acted upon by an unbalanced force. Which makes the students claim wrong because a object doesn't require another force to keep it moving.
If the kinetic energy of each ball is equal to that of the other,
then
(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²
Multiply each side by 2:
(mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²
Divide each side by (mass of gb) and by (speed of ppb)² :
(mass of ppb)/(mass of gb) = (speed of gb)²/(speed of ppb)²
Take square root of each side:
√ (ratio of their masses) = ( 1 / ratio of their speeds)²
By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written. Let's just come in from the
cold, and say it the clear, easy way:
If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.
If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.
The pingpong ball is moving faster than the golf ball.
The directions of their motions are irrelevant.
It's Endorphins. That's a pain killer produced by the brain.
1) 211m/s
2)240<span>°
3)759,600m or 759.6 km</span>