1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmasim [6.3K]
1 year ago
12

A baseball of mass 1.23 kg is thrown at a speed of 65.8 mi/h. What is its kinetic energy?

Physics
1 answer:
frosja888 [35]1 year ago
4 0

Given:

The mass of the ball is

m=1.23\text{ kg}

The speed of the ball is

\begin{gathered} v=65.8\text{ mi/h} \\  \end{gathered}

Required: calculate the kinetic energy of the baseball

Explanation: to calculate the kinetic energy of a body we will use the formula as

K.E=\frac{1}{2}mv^2

first, we convert velocity from mi/h into m/s.

we know that

1\text{ mi=1609.34 m}

and

1\text{ h=3600 sec}

then the velocity is

\begin{gathered} v=\frac{65.8\times1602.34\text{ m}}{3600\text{ s}} \\ v=29.29\text{ m/s} \end{gathered}

now plugging all the values in the above formula, we get

\begin{gathered} K.E=\frac{1}{2}mv^2 \\ K.E=\frac{1}{2}\times1.23\text{ kg}\times(29.29\text{ m/s})^2 \\ K.E=527.61\text{ J} \end{gathered}

Thus, the kinetic energy of the baseball is

527.61\text{ J}

You might be interested in
Oil and water don’t mix, and the mass density of oil is smaller than that of water. Suppose water is poured into a U-shaped tube
Inga [223]

Answer:

The right leg (oil on top) is higher

Explanation:

Given:

The mass density of oil is lesser than the mass density of water.

  • When we pour water in a u-tube that is open at both the ends then the water on both the sides of the tube will rise up to the same height because the algebraic sum of the pressure exerted by the water column and the pressure of atmosphere on both the openings is equal.
  • When we pour oil in the right side of the u-tube we observe that the column of liquid on the right side rises more than the column of the liquid on the left side. However we observe that there is rise on both sides of the u-tube.

<u>This is justified by the equation:</u>

P=\rho.g.h

where:

\rho = density of the liquid

g= acceleration due to gravity

h= height of the liquid column

8 0
3 years ago
Switches, flashers, and similar devices controlling transformers and electronic power supplies shall be rated for controlling in
Reika [66]

Answer:

Option A - twice

Explanation:

5 0
3 years ago
What is true about surface waves?
fredd [130]
B. is the correct answer
6 0
3 years ago
Read 2 more answers
What is the difference between vector and scalar ?
ddd [48]
The easiest, non-technical way to think about it is like this:

-- A scalar is a quantity that has a size but no direction.
Those include temperature, speed, cost, volume, distance, etc.

One number is all there is to know about it, and there's no way you can
add more of the same stuff to it that would cancel both of them out.

-- A vector is a quantity that has a size and also has a direction.
Those include force, displacement, velocity, acceleration, etc.

It takes more than one number to completely describe one of these.
Also, if you combine two of the same vector quantity in different ways,
you can get different results, and they can even cancel each other out.

Here are some examples.  Notice that in each of these examples,
every speed has a direction that goes along with it.  This turns the
scalar speed into a vector velocity.

If you're walking inside a bus, and the bus is driving along the road,
then your velocity along the road is the sum of your walking velocity
inside the bus plus the velocity of the bus along the road.

-- If you're walking north up the middle of the bus at 2 miles per hour
and the bus is driving north along the road at 20 miles per hour, then
your velocity along the road is 22 miles per hour north.

-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is driving north along the road at 5 miles per hour, then your
velocity along the road is 3 miles per hour north.

-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is just barely rolling north along the road at 2 miles per hour,
then your velocity along the road is zero.

--  If you're in a big railroad flat-car that's rolling north along the track
at 2 miles per hour, and you walk across the flat-car towards the east
at 2 miles per hour, then your velocity along the ground is 2.818 miles
per hour toward the northeast.
7 0
3 years ago
A(n) 7.7-kg object is sliding across the ice at 2.34 m/s in the positive x direction. An internal explosion occurs, splitting th
-BARSIC- [3]

Answer:

Average acceleration on first part of the chunk is given as

a_1 = 13.125 m/s^2

Average acceleration on second part of the chunk is given as

a_2 = -13.125 m/s^2

Explanation:

By momentum conservation along x direction we will have

mv_i = \frac{m}{2}v_1 + \frac{m}{2}v_2

so we have

v_1 + v_2 = 2v

v_1 + v_2 = 4.68

also by energy conservation

\frac{1}{2}(\frac{m}{2})v_1^2 + \frac{1}{2}(\frac{m}{2})v_2^2 - \frac{1}{2}mv^2 = 17 J

\frac{1}{4}m(v_1^2 + v_2^2) - \frac{1}{2}mv^2 = 17

(v_1^2 + v_2^2) - 2v^2 = \frac{4}{7.7}(17)

(4.68 - v_2)^2 + v_2^2 - 2v^2 = 8.83

21.9 + 2v_2^2 - 9.36 v_2 - 10.95 = 8.83

2v_2^2 - 9.36v_2 + 2.12 = 0

by solving above equation we will have

v_1 = 4.44 m/s

v_2 = 0.24 m/s

Average acceleration on first part of the chunk is given as

a_1 = \frac{4.44 - 2.34}{0.16}

a_1 = 13.125 m/s^2

Average acceleration on second part of the chunk is given as

a_2 = \frac{0.24 - 2.34}{0.16}

a_2 = -13.125 m/s^2

5 0
3 years ago
Other questions:
  • Consider a concave mirror with a focal length of 12.60 cm. a) Find the image distance when the object distance is 12.60 cm. (Ans
    12·1 answer
  • What are the three types of muscle fibers?
    9·2 answers
  • 18. A 2.0-ohm resistor is connected in a series with a 20.0 -V battery and a three-branch parallel network with branches whose r
    10·2 answers
  • Explain how machines make work easier if they still require that the same amount of work be done.
    9·2 answers
  • The study of the stars and planets
    13·1 answer
  • Which of the following is an example of a way that an individual can help the environment?
    9·2 answers
  • Convergent faults _____.
    15·1 answer
  • An object is moving east, and its velocity changes from 66 mvs to 26 mvs in 10 seconds. Which describes the
    8·1 answer
  • An object of mass 2 kg travels through outer space in a straight line at a constant
    11·1 answer
  • You are an astronomer and are making observations about a visible but faraway galaxy. Describe what evidence you could gather to
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!