Center.........................
The initial velocity of the ball is 1.01 m/s
Explanation:
The motion of the ball rolling off the desk is a projectile motion, which consists of two independent motions:
- A uniform horizontal motion with constant horizontal velocity
- A vertical accelerated motion with constant acceleration (
, acceleration due to gravity)
We start by analyzing the vertical motion: we can find the time of flight of the ball by using the following suvat equation

where
s = 1.20 m is the vertical displacement (the height of the desk)
u = 0 is the initial vertical velocity

t is the time of flight
Solving for t,

Now we analyze the horizontal motion. We know that the ball covers a horizontal distance of
d = 0.50 m
in a time
t = 0.495 s
Therefore, since the horizontal velocity is constant, we can calculate it as

So, the ball rolls off the table at 1.01 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
The difference in electric potential energy between the two points is

where q is the magnitude of the charge and

is the electric potential difference.
But for energy conservation, the difference in electric potential energy

between the two points is equal to the work done to move the charge between A and B:

so we have

and by substituting the numbers of the problem, we find the value of

:
<h2>
Answer: 745.59 nm</h2>
Explanation:
The diffraction angles
when we have a slit divided into
parts are obtained by the following equation:
(1)
Where:
is the width of the slit
is the wavelength of the light
is an integer different from zero
Now, the first-order diffraction angle is given when
, hence equation (1) becomes:
(2)
We know:
In addition we are told the diffraction grating has 750 slits per mm, this means:
Solving (2) with the known values we will find
:
(3)
(4)
Knowing
:
>>>This is the wavelength of the light, wich corresponds to red.
Answer:
517.5Ns
Explanation:
F=(MV - MU)/t
where MV - MU is the change in momentum,
therefore, MV - MU = Ft
= 345 X 1.
= 517.5Ns