1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lions [1.4K]
3 years ago
5

Complete the identity. 1) sec^4 x + sec^2 x tan^2 x - 2 tan^4 x = ?

Mathematics
1 answer:
Alecsey [184]3 years ago
8 0

Answer:

See Explanation

Step-by-step explanation:

<em>Question like this are better answered if there are list of options; However, I'll simplify as far as the expression can be simplified</em>

Given

sec^4 x + sec^2 x tan^2 x - 2 tan^4 x

Required

Simplify

(sec^2 x)^2 + sec^2 x tan^2 x - 2 (tan^2 x)^2

Represent sec^2x with a

Represent tan^2x with b

The expression becomes

a^2 + ab- 2 b^2

Factorize

a^2 + 2ab -ab- 2 b^2

a(a + 2b) -b(a+ 2 b)

(a -b) (a+ 2 b)

Recall that

a = sec^2x

b = tan^2x

The expression (a -b) (a+ 2 b) becomes

(sec^2x -tan^2x) (sec^2x+ 2 tan^2x)

..............................................................................................................................

In trigonometry

sec^2x =1  +tan^2x

Subtract tan^2x from both sides

sec^2x - tan^2x =1  +tan^2x - tan^2x

sec^2x - tan^2x =1

..............................................................................................................................

Substitute 1 for sec^2x - tan^2x in (sec^2x -tan^2x) (sec^2x+ 2 tan^2x)

(1) (sec^2x+ 2 tan^2x)

Open Bracket

sec^2x+ 2 tan^2x ------------------This is an equivalence

(secx)^2+ 2 (tanx)^2

Solving further;

................................................................................................................................

In trigonometry

secx = \frac{1}{cosx}

tanx = \frac{sinx}{cosx}

Substitute the expressions for secx and tanx

................................................................................................................................

(secx)^2+ 2 (tanx)^2 becomes

(\frac{1}{cosx})^2+ 2 (\frac{sinx}{cosx})^2

Open bracket

\frac{1}{cos^2x}+ 2 (\frac{sin^2x}{cos^2x})

\frac{1}{cos^2x}+ \frac{2sin^2x}{cos^2x}

Add Fraction

\frac{1 + 2sin^2x}{cos^2x} ------------------------ This is another equivalence

................................................................................................................................

In trigonometry

sin^2x + cos^2x= 1

Make sin^2x the subject of formula

sin^2x= 1  - cos^2x

................................................................................................................................

Substitute the expressions for 1  - cos^2x for sin^2x

\frac{1 + 2(1  - cos^2x)}{cos^2x}

Open bracket

\frac{1 + 2  - 2cos^2x}{cos^2x}

\frac{3  - 2cos^2x}{cos^2x} ---------------------- This is another equivalence

You might be interested in
How can you express 499 to find the product 499 x 5 using mental math? explain
Mashcka [7]
We can write 499 as 499 = 500 - 1

Because it is easy to multiply 500 and 5 compare to 499 to 5.

So product of 499 * 5 = (500 - 1)*5
                                   = 500*5 - 1*5
                                   = 2500 -5 = 2495

So the answer is 2495.
4 0
3 years ago
Help! I don't get this, and if it is easy to you, this isn't my paper, it is my friends! &lt;3
mihalych1998 [28]

(1 + i)/(1 + 2i)

To simplify this, we need to multiply both sides by the conjugate.

(1 + i)(1 - 2i)

1 - 2i - i - 3i^2

Combine like terms.

3i^2 - 3i + 1

i^2 = -1

-3i - 2 is the simplified numerator.

(1 + 2i)(1 - 2i)

1 - 2i + 2i - 4i^2

1 - 4i^2

i^2 = -2

1 + 4

5


<h3><u>The simplified expression is ((-3i)/5) + ((-2)/5)</u></h3>
7 0
3 years ago
Which equation has a graph with a vertex at (-1,-1)?
11111nata11111 [884]

y =  {(x  + 1)}^{2}  - 1

The one is a vertical translation of the parent function to the left of one

f(x) =  {x}^{2}

making it -1.

6 0
3 years ago
Choose the item that has measurable volume.
miss Akunina [59]

Answer:

B. A jug of milk

Step-by-step explanation:

Hope this helps you :)

6 0
3 years ago
Find the radius of a sphere with a surface area of 1024π square inches
agasfer [191]

Answer:

<h2>R = 16 in</h2>

Step-by-step explanation:

The formula of a Surface Area of a sphere:

S.A.=4\pi R^2

R - radius

We have

S.A.=1024\pi\ in^2

Substitute:

4\pi R^2=1024\pi               <em>divide both sides by π</em>

4R^2=1024             <em>divide both sides by 4</em>

R^2=256\to R=\sqrt{256}\\\\R=16\ in

4 0
3 years ago
Other questions:
  • What is 4 1/3 * 2 1/7 as a mixed number in simplest form?
    14·2 answers
  • Find the value of sec θ for the angle shown
    12·1 answer
  • 5m &gt; 20 how do I solve this??
    7·1 answer
  • Round 739 to the nearest ten and hundred
    8·2 answers
  • The ratio of teachers to students is 1 to 7. if there are 5 teachers, how many students are there?
    8·1 answer
  • Find the value for X below <br><br><br><br> stop putting fake answers im reporting them all lol
    6·1 answer
  • Write the expanded form of the expression.
    8·1 answer
  • Use the FOIL method to check your answer from part A.
    10·1 answer
  • Can you guys help me please with these 2 questions
    10·1 answer
  • Please answer i will make brainiest
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!