Compute the derivative of <em>y</em> = (<em>x</em>² + <em>x</em> - 2)² using the chain rule:
d<em>y</em>/d<em>x</em> = 2 (<em>x</em>² + <em>x</em> - 2) d/d<em>x</em> [<em>x</em>² + <em>x</em> - 2]
d<em>y</em>/d<em>x</em> = 2 (<em>x</em>² + <em>x</em> - 2) (2<em>x</em> + 1)
Evaluate the derivative at <em>x</em> = -1 :
d<em>y</em>/d<em>x</em> (-1) = 2 ((-1)² + (-1) - 2) (2 (-1) + 1) = 4
This is the slope of the tangent line to the function at (-1, 4).
Use the point-slope formula to get the equation for the tangent line:
<em>y</em> - 4 = 4 (<em>x</em> - (-1)) → <em>y</em> = 4<em>x</em> + 8
The answer is 26 hope that helped
Look up what is mean and calculate it.
Answer:
The length of a 180° arc of a unit circle is π ≈ 3.14 units.
Step-by-step explanation:
Use your knowledge of the circumference of a circle (the length full around) and the fact that there are 360° in the central angle of a full circle. The distance around is proportional to the angle, so an arc of measure 180° will have a length equal to
... (180°/360°) × circumference = (1/2)×circumference
For a unit circle, the circumference is 2π (= π×diameter = 2π×radius). Half that length is π units.
Answer:
![y(y+2x^2)/x(5y^2-6x)](https://tex.z-dn.net/?f=y%28y%2B2x%5E2%29%2Fx%285y%5E2-6x%29)
Step-by-step explanation: