(-7,3) here is the answer, easy one
Answer:

Step-by-step explanation:
To find the matrix A, took all the numeric coefficient of the variables, the first column is for x, the second column for y, the third column for z and the last column for w:
![A=\left[\begin{array}{cccc}1&1&2&2\\-7&-3&5&-8\\4&1&1&1\\3&7&-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%261%262%262%5C%5C-7%26-3%265%26-8%5C%5C4%261%261%261%5C%5C3%267%26-1%261%5Cend%7Barray%7D%5Cright%5D)
And the vector B is formed with the solution of each equation of the system:![b=\left[\begin{array}{c}3\\-3\\6\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D3%5C%5C-3%5C%5C6%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
To apply the Cramer's rule, take the matrix A and replace the column assigned to the variable that you need to solve with the vector b, in this case, that would be the second column. This new matrix is going to be called
.
![A_{2}=\left[\begin{array}{cccc}1&3&2&2\\-7&-3&5&-8\\4&6&1&1\\3&1&-1&1\end{array}\right]](https://tex.z-dn.net/?f=A_%7B2%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%262%262%5C%5C-7%26-3%265%26-8%5C%5C4%266%261%261%5C%5C3%261%26-1%261%5Cend%7Barray%7D%5Cright%5D)
The value of y using Cramer's rule is:

Find the value of the determinant of each matrix, and divide:


Answer:
I think 4:1 I'm not that sure tho
$1.40 - price from a supplier = 100%
100% + 80% = 180% = 1,8 - the retail price
1,40 * 1,8 = $2,52 - the retail price
100% - 25% = 75% = 0,75 - on sale for 25% off
2,52 * 0,75 = $1,89 - the sale price.
Answer:
5
Step-by-step explanation:
40÷[20-4*(7-4)]
Start with the inner most parentheses
40÷[20-4*(3)]
Then the brackets, multiply first
40÷[20-12]
Then subtract
40÷[8]
We are now left with the division
5