Answer:
c. Both Technicians A and B
Explanation:
Disc brakes are self-adjusting because the pistons in the brakes are much larger in diameter than the ones in the master cylinder. If the brake pistons retracted into their cylinders, it might take several applications of the brake pedal to pump enough fluid into the brake cylinder to engage the brake pads. The height of the brake pedal is also necessary because if they become lower the disc brake pads will wear, this is why self-adjustment is important and disc brake pads usually have a piece of metal on them called a wear indicator to warn of wearing. Also when disc break pads wear, the fluid level in the master cylinder drops, armed with this knowledge of low master cylinder fluid level one can inspect the disc pads for wear. Thus both Technicians A and B are correct.
Answer:
5
Explanation:
electrons can be more than det
D), because the roller coaster it's falling, therefore, losing height, but gaining velocity
(a) What is
the potential energy: PE = -G * M * m/r
Where: M is the mass of the earth which is 5.98 * 10^24 kg.
m is the mass of the satellite.
r is the space from the center of the earth to the satellite
To conclude this distance add the radius of the earth to the
altitude. Radius of the earth is 6.38 * 10^6 meters.
r = 6.38 * 10^6 + 2.02 * 10^6 = 8.38 * 10^6
PE = 6.67 * 10^-11 * 5.98 * 10^24 * 99/8.38 * 10^6 =
4.71240095 * 10^9 J
(b) magnitude of the gravitational force exerted by the
Earth
Fg = G * M * m/r^2
Fg = 6.67 * 10^-11 * 5.98 * 10^24 * 99/(8.38 * 10^6)^2 =
562.3078873 N
(c) There are no other forces that the satellite exert on
the Earth. So therefore, it is 0.
Answer:
The work done by the hoop is equal to 5.529 Joules.
Explanation:
Given that,
Mass of the hoop, m = 96 kg
The speed of the center of mass, v = 0.24 m/s
To find,
The work done by the hoop.
Solution,
The initial energy of the hoop is given by the sum of linear kinetic energy and the rotational kinetic energy. So,

I is the moment of inertia, 
Since, 


Finally it stops, so the final energy of the hoop will be, 
The work done by the hoop is equal to the change in kinetic energy as :

W = -5.529 Joules
So, the work done by the hoop is equal to 5.529 Joules. Therefore, this is the required solution.