Answer:
Speed, mass and acceleration
Explanation:
A scalar quantity is a quantity that has only magnitude but no direction while a vector quantity has both magnitude and direction.
According to the question, the row that has two scalars and one vector is speed, mass and acceleration.
The two scalars in this row are speed and mass while the vector quantity there is the acceleration.
Acceleration has direction since it possess direction. A body accelerating will do so in a particular direction. Speed and mass doesn't possess any direction. Mass only specify the magnitude of the body but no clue as to which direction is the body moving towards.
Speed also only specify the
total distance covered with respect to time but not the direction of the direction.
Light travels in waves AND in bundles called "photons".
It's hard to imagine something that's a wave and also a bundle.
But it turns out that light behaves like both waves and bundles.
If you design an experiment to detect waves, then it responds to light.
And if you design an experiment to detect 'bundles' or particles, then
that one also responds to light.
weight = mg acts
downwards <span>
normal force = N acts upwards.
and force F acts at an angle θ below the horizontal.
(Let us assume that the woman pushes from the left, so F is
acted towards the right, which is below the horizontal)
so that, Frictional force, f=us*N acts towards the left
Now we balance the forces along x and y directions:
y direction: N = mg + F sinΘ
x direction: us * N = F cosΘ
We let the value of µs be equal to a value such that any F
will not be able to move the crate. Then, if we increase F by an amount F',
then the force pushing the crate towards the right also increases by F' cosΘ. Additionally,
the frictional force f must raise by exactly this amount.
Since f can’t exceed us*N, so the normal force must increase
by F' cosΘ/us.
Also, from the y direction equation, the normal force exceeds
by F' sin Θ.
<span>These two values must be the same, therefore:
<span>us = cot θ</span></span></span>
Answer:

Explanation:
When an object goes on a circular movement, it has a centripetal acceleration that always points toward the center of the circle, it is the responsible of the change of direction in the movement of the object. and that centripetal acceleration is related with the speed in the next way:
, with v the speed, r the radius of the track that is half of the diameter (22.5 m)


3. Distance is a quantity that is always a vector.
B.