Answer:
option D
Explanation:
given,

increase the intensity by factor of 9
I₁ = I₀
I₂ = 9 I₀
now,




A₂ = 3 A₁
hence, amplitude increase with the factor of 3
so, the correct answer is option D
Answer:
20kg
Explanation:
Mass is a measure of the amount of matter in an object. The mass of an object, the amount of matter inside it does not change based on location. E.g. Objects do not lose matter when they travel to the moon.
Weight, on the other hand is the downward force you exert on the ground. Weight is calculated by multiplying the mass by the gravitational field strength and changes in different places with different gravitational strength. E.g. The moon's gravitational strength is 1/5 of Earth's so the mass of the object would stay the same but the weight would be only 20% of the weight is had on earth.
Hope this helped!
Answer:
a = 0.55 m / s²
Explanation:
The centripetal acceleration is given by the relation
a = v² / r
angular and linear velocities are related
v = w r
we substitute
a = w² r
In the exercise they indicate the angular velocity w = 1 rev/min, let's reduce to the SI system
w = 1 rev / min (2pi rad / 1rev) (1min / 60s) = 0.105 rad/ s
let's calculate
a = 0.105² 50.0
a = 0.55 m / s²
Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0