<span>Copernicus decided this with more of an educated guess than anything. For example is when your standing right next to a plane it's huge Right? Well when it's flying it looks really small. He used the same reasoning for stars. Since it looks small it must be farther away.</span>
Answer:
111.5 m
Explanation:
Given that You are driving to the grocery store at 14 m/s. You are 115 m from an intersection when the traffic light turns red. Assume that your reaction time is 0.50 s and that your car brakes with constant acceleration.
Use first equation of motion
V = U - at
Since the car is going to rest, V = 0 and a = negative
0 = 14 - a × 0.5
0.5a = 14
a = 14 /0.5
a = 28 m/s^2
Let us use second equation of motion
S = Ut - 1/2at^2
S = 14 × 0.5 - 0.5 × 28 × 0.5^2
S = 7 - 3.5
S = 3.5 m
115 - 3.5 = 111.5
Therefore, you are 111.5 metres from the intersection (in m) when you begin to apply the brakes.
ANSWER:
F(h)= 230 N is the horizontal force you will need to move the pickup along the same road at the same speed.
STEP-BY-STEP EXPLANATION:
F(h) is Horizontal Force = 200 N
V is Speed = 2.4 m/s
The total weight increase by 42%
coefficient of rolling friction decrease by 19%
Since the velocity is constant so acceleration is zero; a=0
Now the horizontal force required to move the pickup is equal to the frictional force.
F(h) = F(f)
F(h) = mg* u
m is mass
g is gravitational acceleration = 9.8 m/s^2
200 = mg*u
Since weight increases by 42% and friction coefficient decreases by 19%
New weight = 1+0.42 = 1.42 = (1.42*m*g)
New friction coefficient = μ = 1 - 0.19 = 0.81 = 0.81 u
F(h) = (0.81μ) (1.42 m g)
= (0.81) (1.42) (μ m g)
= (0.81) (1.42) (200)
= 230 N
Answer:
an example of an exthermic process is combustion
Explanation:
combustion is like lighting a candle
Parallel has more than one circuit or form of energy
series has only one form of energy circuit