Kangchenjunga (8,586 metres (28,169 ft)) was considered to be the highest mountain from 1838 until 1852. Mount Everest, 8,848 metres (29,029 ft). Established as highest in 1852 and officially confirmed in 1856.
Answer:
The magnitude of vector B is 43 units and it points in the negative y-direction.
Explanation:
Resultant of vectors = vector sum of all the vectors
Vector A = 29j
Vector B = ?
Resultant of vector A and B = R = -14j
R = A + B
-14j = 29j + B
B = -14j - 29j = - 43j
Hence, the magnitude of vector B is 43 units and it points in the negative y-direction.
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

<span>Jun 16, 2012 - Given a temperature of 300 Kelvin, what is the approximate temperature in degrees Celsius? –73°C 27°C 327°C 673°C.</span><span>
</span>