Answer:
Charge = 4.9096 x 10⁻⁷ C
Explanation:
First, we find the resistance of the copper wire.
R = ρL/A
where,
R = resistance = ?
ρ = resistivity of copper = 1.69 x 10⁻⁸ Ω.m
L = Length of wire = 2.16 cm = 0.0216 m
A = Cross-sectional area of wire = πr² = π(0.00233 m)² = 1.7 x 10⁻⁵ m²
Therefore,
R = (1.69 x 10⁻⁸ Ω.m)(0.0216 m)/(1.7 x 10⁻⁵ m²)
R = 2.14 x 10⁻⁵ Ω
Now, we find the current from Ohm's Law:
V =IR
I = V/R
I = 3.27 x 10⁻⁹ V/2.14 x 10⁻⁵ Ω
I = 1.52 x 10⁻⁴ A
Now, for the charge:
I = Charge/Time
Charge = (I)(Time)
Charge = (1.52 x 10⁻⁴ A)(3.23 x 10⁻³ s)
<u>Charge = 4.9096 x 10⁻⁷ C</u>
its 13.98. it's simple multiplication 3* 4.66= 13.98
The magnetizing current in a transformer is rich in 3rd harmonic. This is because harmonics are AC voltages and currents with frequencies that are generally higher.
Answer:
5.59 m/s2
Explanation:
F = 1900 N
m = 340 kg
F = ma
Therefore, a = 1900/340 = 5.59
So basically you, then, finally, you