The Earth heats up, the cloud coverage acting as a blanket to raise the general areas temperature.
Answer:
the initial velocity is 20 m/s and the acceleration is 2 m/s²
Explanation:
Given equation of motion, v = 20 + 2t
If V represents the final velocity of the object, then the initial velocity and acceleration of the object is calculated as follows;
From first kinematic equation;
v = u + at
where;
v is the final velocity
u is the initial velocity
a is the acceleration
t is time of motion
If we compare (v = u + at) to (v = 20 + 2t)
then, u = 20 and
a = 2
Therefore, the initial velocity is 20 m/s and the acceleration is 2 m/s²
Answer:
1)Observe a phenomenon
2)Ask a question/ start inferring
3)Form a hypothesis
4)Create an experiment
5)Collect data
6)Compare results
7)Analyze
8)Report findings
9)Compare with other experiments
Explanation:
Given that,
Mass of the car, m₁ = 1250 kg
Initial speed of the car, u₁ = 7.39 m/s
Mass of the truck, m₂ = 5380 kg
It is stationary, u₂ = 0
Final speed of the truck, v₂ = 2.3 m/s
Let v₁ is the final velocity of the car. Using the conservation of momentum as :



So, the final velocity of the car is 2.5 m/s but in opposite direction. Hence, this is the required solution.
The driver is tooling along in his snowmobile, pointed north,
at 8.5 m/s.
He's carrying the flares with him, so the flares are also moving north
at 8.5 m/s.
When he fires the flare straight up, it has a vertical velocity of 4.3 m/s
straight up, and a horizontal velocity of 8.5 m/s towards the north.
The magnitude of the net velocity is √(4.3² + 8.5²) .
That's about 9.53 m/s, at some angle between straight up
and straight north.
The angle above horizontal is the angle that has a tangent of 4.3/8.5 .
I'll let you work out the angle.