Answer:
Th is the symbol for element Thorium.
Mg is magnesium while Mg 2+ is magnesium Ion. Judging from periodic trends, atomic radius is one half the distance between the atoms of two covalently bonded atoms. It decreases as elevtrons are added to valence shells. That means, across the period it increases and down the group it decreases. Making Mg2+ smaller.
Electronegativity is the energy needed to take an electron in the gaseous state. Florine is more electron negative that lithium. It increases across the period and decreases down the group. Except in the Noble group.
Explanation:
The density does not change because it is still the same liquid as before
ωєℓℓ тнє ρнσѕρнσяι¢ α¢ι∂ мσℓє¢υℓєѕ αттα¢н тσ тнє мσℓє¢υℓєѕ σf тнє мιℓк, αи∂ тнαт ιи¢яєαѕєѕ тнє ∂єиѕιту αи∂ тнєи ѕєρєяαтєѕ тнєм fяσм тнє яєѕт σf тнє ℓιqυι∂ ιи ιт. тнє яємαιи∂єя σf тнє ℓιqυι∂ѕ,иσω нανιиg ℓєѕѕ ∂єиѕιту тнαи тнє ρнσѕρнσяι¢ α¢ι∂ѕ & тнє мιℓк мσℓє¢υℓєѕ, ѕσ ιт ιт иσω fℓσαтѕ σи тσρ.
нσρє ι ¢συℓ∂ нєℓρ уσυ.
<em>This statement is false.</em> When you say full octet, it means that an element opts to have eight electrons in its valence shell to become stable. However, since a hydrogen atom only has 1 electron when neutral, it is impossible to reach a full octet. That is why Hydrogen is one of the exceptions to this octet rule.
Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction for this problem about stoichiometry:

Whereas there is a 3:2 mole ratio of oxygen (molar mass = 32.0 g/mol) to iron (III) oxide (molar mass = 159.69 g/mol) and therefore, the correct stoichiometric setup is:

Regards!