The electrostatic force between two charges Q1 and q is given by

where
ke is the Coulomb's constant
Q1 is the first charge
q is the second charge
r is the distance between the two charges
Re-arranging the formula, we have

and since we know the value of the force F, of the charge Q1 and the distance r between the two charges, we can calculate the value of q:

And since the force is attractive, the two charges must have opposite sign, so the charge q must have negative sign.
Answer:
<em>Before the parachute opens: Immediately on leaving the aircraft, the skydiver accelerates downwards due to the force of gravity. There is no air resistance acting in the upwards direction, and there is a resultant force acting downwards. The skydiver accelerates towards the ground.</em>
<em>Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down.</em>
<h3>
I HOPE THIS WILL HELP YOU IF NOT THEN SORRY</h3>
HAVE A GREAT DAY :)
Answer:
1.13 x 10⁵N
Explanation:
Given parameters:
Pressure of the coin press = 3.2 x 10⁸ Pa
radius of the nickel coin = 0.0106m
Unknown:
Force of the press on coil = ?
Solution:
Our knowledge of pressure will help us solve this problem.
Pressure is defined as the force applied per unit area on a body.
Pressure = 
Force = Pressure x Area
Since the pressure is known;
Area of the coin = Area of a circle = π r²
where r is the radius of the coin;
Area of the coin = π x 0.0106² = 3.53 x 10⁻⁴m²
Force = 3.2 x 10⁸ x 3.53 x 10⁻⁴ = 1.13 x 10⁵N
Answer:
Yes it does
Explanation:
Gravity is pushing down on the pencil but the coffee mug is also pushing the pencil up with the same amount of force so they both don't move
Answer: C Plane
Explanation: According to Newton's law, gravitational force is proportional to the product of masses and inversely proportional to the square of distance between them.
Gravitational force depends on mass. The bigger the mass, the more the magnitude of the gravitational force. Since plane is assume to have the highest mass in the options, we can therefore conclude that plane will experience the highest gravitational force.