Answer:
113.53 g
Explanation:
Please see attached photo for explanation.
In the attached photo, M is the mass of the meter stick.
The value of M can be obtained as shown below:
Clockwise moment = M × 10.5
Anticlockwise moment = 65.5 × 18.2
Anticlockwise moment = Clockwise moment
65.5 × 18.2 = M × 10.5
1192.1 = M × 10.5
Divide both side by 10.5
M = 1192.1 / 10.5
M = 113.53 g
Thus, the mass of the meter stick is 113.53 g
Answer:
Explanation:
An object falling loses gravitational potential energy and gains kinetic energy. The gravity potential is the gravitational potential energy per unit mass. This energy comes from the gravitational potential energy released when the water falls. ... At 0, all the energy is in gravitational potential energy.
Answer:
Increasing its charge
Increasing the field strength
Explanation:
For a charged particle moving in a circular path in a uniform magnetic field, the centripetal force is provided by the magnetic force, so we can write:

where
q is the charge
v is the velocity
B is the magnetic field
m is the mass
r is the radius of the orbit
The period of the motion is

Re-arranging for r

And substituting into the previous equation

Solving for T,

So we see that the period is:
- proportional to the charge and the magnetic field
- inversely proportional to the mass and the square of the speed
So the following will increase the period of the particle's motion:
Increasing its charge
Increasing the field strength
Explanation:
It s given that,
Mass of a planet, 
Radius of a planet, 
(1) We need to find the acceleration due to gravity for a person on the surface of the planet. Its formula is given by :



(2) The escape velocity is given by :


v = 7324.61 m/s
Hence, this is the required solution.
0.02020 ohm is the resistance of a carbon rod at 25.8 ∘C if its resistance is 0.0200 Ω at 0.0 ∘C.
<h3 /><h3>What is a resistor?</h3>
A resistor is an electrical component that controls or restricts how much electrical current can pass across a circuit in an electronic device. A specified voltage can be supplied via resistors to an active device like a transistor.
The temperature of the resistor varies based on the variation in the temperature. The equation that describes the relationship between the two of them is:
R = R0[1+ alpha(T-T0)] where:
R is the new resistance we are looking for
alpha is the temperature coefficient of resistance. For carbon rod, alpha = ₋ 4.8 x
(1/°c)
T0 is the standard temperature =25.8°C
R0 is the resistance at T0 = 0.0200 ohms
T is the temperature at which we want to get R = 0
Substitute in the equation to get R as follows:
R = 0.0200 [1+( ₋ 4.8 x
) (0-25.8)] = 0.02020 ohm
To know more about resistance refer to: brainly.com/question/11431009
#SPJ1