The period of any wave is the time it takes for its angle
to go from zero to 2pi .
The 'sin' function is a wave. The angle of this one is (8pi t).
When t=0, the angle is zero.
Wonderful.
Now, how long does it take for the angle to grow to 2pi ?
I*n other words, when is (8pi t) = 2pi ?
Divide each side by '2pi': . . . . . 4 t = 1
Divide each side by ' 4 ': . . . . . t = 1/4
And there you are. Every time 't' grows by 1/4, (8pi t) grows by 2pi.
So if you graph this simple harmonic motion described by 'd', you'll
see the graph wiggle up and down with a period of 1/4 .
Answer:
TE = sqrt(GM/GE)TM
Explanation:
To solve for this problem, you have to use the second kinematic equation and set the height equal to each other. Because the heights are equal, 1/2GETE^2 = 1/2GMTM^2. Rearrange the equation and you'll get the answer
Answer: Resonance in sound is when one object is vibrating at the same frequency to the second object of forces to the second frequency.
Explanation:
"Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies)." wikipedia I hope this helps you!
Answer:
Explanation:
electric field at the location of electron
= 9 x 10⁹ x 7.2 / .03²
= 72 x 10¹² N/C
force on electron = electric field x charge on electron
= 72 x 10¹² x 1.6 x 10⁻¹⁹
= 115.2 x 10⁻⁷ N .
C )
work done = charge on electron x potential difference at two points
potential at .03 m
= 9 x 10⁹ x 7.2 / .03
= 2.16 x 10¹² V
potential at .001 m
= 9 x 10⁹ x 7.2 / .001
= 64.8 x 10¹² V
potential difference = (64.8 - 2.16 )x 10¹² V
= 62.64 x 10¹² V .
work done = 62.64 x 10¹² x 1.6 x 10⁻¹⁹
= 100.224 x 10⁻⁷ J .
D )
There will be no change in the magnitude of force on positron except that the direction of force will be reversed . In case of electron , there will be repulsion and in case of positron , there will be attraction .
Work done in case of electron will be positive and work done in case of positron will be negative .
electric field due to charge will be same in both the cases .