Tendon Sheath - is a specialized bursa that wraps around a tendon to reduce friction.
<h3>What is Tendon Sheath ?</h3>
Tendon Sheath is a thin layer of tissue, surrounds each tendon in our body. The tendon sheath can also be called synovial lining or fibrous sheath. Tendon sheaths help to protect tendons from abrasive damage as they move.
Connection between Bursa and Tendon Sheath : Bursae are small fluid-filled sacs that can lie under a tendon, cushioning the tendon and protecting it from the injury. Bursae also provides an extra cushioning to adjacent structures that otherwise might rub against each other, which will cause wear and tear ( example, between a bone and a ligament ) .
So, lastly we can say that Tendon Sheath is the specialized bursa that wraps around a tendon to reduce friction.
To know more about Tendon Sheath please click here : brainly.com/question/17087116
#SPJ4
Answer:
a) The plasma membrane is called a selectively permeable membrane as it permits the movement of only certain molecules in and out of the cells. ... It allows hydrophobic molecules and small polar molecules diffuse through the lipid layer, but does not allow ions and large polar molecules cannot diffuse through the membrane
b) Plastids are present in the cells of plants. They are characterised by the presence of pigments. ... Chloroplasts contain chlorophyll and carotenoid pigments responsible for capturing the light energy that is necessary for photosynthesis. The chloroplasts are therefore known as the kitchen of the cell.
c) Lysosomes are known as the suicidal bag of the cell because it is capable of destroying its own cell in which it is present. It contains many hydrolytic enzymes which are responsible for the destruction process. This happens when either the cell is aged or gets infected by foreign agents like any bacteria or virus.
d) Mitochondria are often called the “powerhouses” or “energy factories” of a cell because they are responsible for making adenosine triphosphate (ATP), the cell's main energy-carrying molecule. ... In mitochondria, this process uses oxygen and produces carbon dioxide as a waste product.
e) In Hydra, the cells are arranged in two germinal layers—outer ectoderm and inner endoderm. Between these two layers is a layer of undifferentiated cells called mesoglea. Such kind of pattern of embryonic layers is seen in diploblastic animals. Hence, Hydra is a diploblastic animal.
<em>WAS</em><em> </em><em>THIS</em><em> </em><em>ANSWER</em><em> </em><em>HELPFUL</em><em> </em><em>?</em>
MARK ME AS A BRAINLIEST
Answer:
Explanation:
radius of aorta = 1.5 cm
cross sectional area = π r²
= 3.14 x 1.5²
= 7.065 cm²
volume of blood flowing out per second out of heart
= a x v , a is cross sectional area , v is velocity of flow
= 7.065 x 11.2
= 79.128 cm³
heart beat per second = 67 / 60
= 1.116666
If V be the volume of heart
1.116666 V = 79.128
V = 70.86 cm³.
<span>Answer:
So this involves right triangles. The height is always 100. Let the horizontal be x and the length of string be z.
So we have x2 + 1002 = z2. Now take its derivative in terms of time to get
2x(dx/dt) = 2z(dz/dt)
So at your specific moment z = 200, x = 100âš3 and dx/dt = +8
substituting, that makes dz/dt = 800âš3 / 200 or 4âš3.
Part 2
sin a = 100/z = 100 z-1 . Now take the derivative in terms of t to get
cos a (da./dt) = -100/ z2 (dz/dt)
So we know z = 200, which makes this a 30-60-90 triangle, therefore a=30 degrees or π/6 radians.
Substitute to get
cos (Ď€/6)(da/dt) = (-100/ 40000)(4âš3)
âš3 / 2 (da/dt) = -âš3 / 100
da/dt = -1/50 radians</span>
The answer to your question is 50 miles per hour