Answer:
the dimensions of the most economical shed are height = 10 ft and side 5 ft
Step-by-step explanation:
Given data
volume = 250 cubic feet
base costs = $4 per square foot
material for the roof costs = $6 per square foot
material for the sides costs = $2.50 per square foot
to find out
the dimensions of the most economical shed
solution
let us consider length of side x and height is h
so we can say x²h = 250
and h = 250 / x²
now cost of material = cost of base + cost top + cost 4 side
cost = x²(4) + x²(6) + 4xh (2.5)
cost = 10 x² + 10xh
put here h = 250 / x²
cost = 10 x² + 10x (250/ x² )
cost = 10 x² + (2500/ x )
differentiate and we get
c' = 20 x - 2500 / x²
put c' = 0 solve x
20 x - 2500 / x² = 0
x = 5
so we say one side is 5 ft base
and height is h = 250 / x²
h = 250 / 5²
height = 10 ft
Answer is 14 I think pretty sure hope so yeah
So I’m a 5th grader...but I wanted to see if I could help you so...this is how I did it.....first I started with the top, 6-2 which is 4 and then I did 4-4 which is 0 then the answer is....( put 2 on the bottom and 0 on the top. I hope I got it right ;(
Answer:
I dont understand where are the statements
Answer:
.006702
Step-by-step explanation: