Answer:
1/4
25 percent
Step-by-step explanation:
Answer:
thus the probability that a part was received from supplier Z , given that is defective is 5/6 (83.33%)
Step-by-step explanation:
denoting A= a piece is defective , Bi = a piece is defective from the i-th supplier and Ci= choosing a piece from the the i-th supplier
then
P(A)= ∑ P(Bi)*P(C) with i from 1 to 3
P(A)= ∑ 5/100 * 24/100 + 10/100 * 36/100 + 6/100 * 40/100 = 9/125
from the theorem of Bayes
P(Cz/A)= P(Cz∩A)/P(A)
where
P(Cz/A) = probability of choosing a piece from Z , given that a defective part was obtained
P(Cz∩A)= probability of choosing a piece from Z that is defective = P(Bz) = 6/100
therefore
P(Cz/A)= P(Cz∩A)/P(A) = P(Bz)/P(A)= 6/100/(9/125) = 5/6 (83.33%)
thus the probability that a part was received from supplier Z , given that is defective is 5/6 (83.33%)
That would be C....(1 x 10^-1) + (6 x 10^-2) + (9 x 10^-3)