Which data set has a median of 15? 9, 17, 13, 15, 16, 8, 12 18, 15, 11, 14, 19, 15, 6 7, 16, 14, 16, 11, 7, 17 18, 9, 19, 16, 6,
ivanzaharov [21]
Answer:
The middle number of the data set or average of the two middle numbers in even numbered sets.
Step-by-step explanation:
A median is the middle point of a data set. We order the numbers from least to greatest and find the number directly in the middle of the list. If there are an even number in the set, then we take an average of the middle two.
The data sets are not separated. However, in the sets you have order them least to greatest each. Then count in from both sides to the middle. That number is the middle.
Let the width be x cm.
Then length=3x-4 cm.
Its perimeter is 64 cm.
We know that perimeter of a rectangle= 2(length+width)
So,
2(3x-4+x)=64
6x-8+2x=64
6x+2x=64+8
8x=72
x=9
Therefore,
length=(3×9-4)cm=(27-4)cm=23 cm.
Width=9 cm.
Answer:
The solution (25, 20) tells the contractor the number of hours on a job where the hourly rate is the same for both billing options.
Step-by-step explanation:
Answer:
−y−1=3
Step-by-step explanation:
Which equation can be used to find the solution of (1/4)^y+1=64?
This can be solved by power of indices
(1/4)^(y+1)=64
(4^-1)^(y + 1)= 4^3
Note
(x^a)^b = x^ab
Hence:
4^(-1)(y + 1)= 4^3
4^-y - 1 = 4^3
Divide both sides by 4
−y−1=3
Hence, the equation that can be used to find the solution of (1/4)^y+1=64 is
−y−1=3