<span>First rewrite y - 2x<span> 2</span> = 8 x + 5 as</span>
y = 2x<span> 2</span><span> + 8 x + 5 </span>
Complete square and determine vertex.
y = 2(x<span> 2</span><span> + 4x + 4) - 8 + 5 </span>
= 2(x + 2)<span> 2</span><span> - 3 </span>
<span>vertex at (- 2 , - 3) </span>
If parabola is translated 3 units to the left and 2 units up its vertex is also translated 3 units to the right and 2 units up .
<span>vertex after translations is at: (-2 - 3 , - 3 + 2) = (-5 , -1)</span>
Answer:
-1, 12 I believe
Step-by-step explanation:
find the distance between the two given plots and do the opposite to find your answer
well, looking at the picture of this vertically opening parabola, it has a vertex at 0,0 and it passes through 2,1 hmm ok
![~~~~~~\textit{vertical parabola vertex form} \\\\ y=a(x- h)^2+ k\qquad \begin{cases} \stackrel{vertex}{(h,k)}\\\\ \stackrel{"a"~is~negative}{op ens~\cap}\qquad \stackrel{"a"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ y = a(x-0)^2+0\qquad \stackrel{\textit{we also know that}}{x=2\qquad y = 1}\qquad \implies 1=a(2-0)^2+0 \\\\\\ 1=4a\implies \cfrac{1}{4}=a~\hspace{10em} \boxed{y=\cfrac{1}{4}x^2}](https://tex.z-dn.net/?f=~~~~~~%5Ctextit%7Bvertical%20parabola%20vertex%20form%7D%20%5C%5C%5C%5C%20y%3Da%28x-%20h%29%5E2%2B%20k%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22a%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22a%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20y%20%3D%20a%28x-0%29%5E2%2B0%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bwe%20also%20know%20that%7D%7D%7Bx%3D2%5Cqquad%20y%20%3D%201%7D%5Cqquad%20%5Cimplies%201%3Da%282-0%29%5E2%2B0%20%5C%5C%5C%5C%5C%5C%201%3D4a%5Cimplies%20%5Ccfrac%7B1%7D%7B4%7D%3Da~%5Chspace%7B10em%7D%20%5Cboxed%7By%3D%5Ccfrac%7B1%7D%7B4%7Dx%5E2%7D)
ANSWER

EXPLANATION
We were given that

varies directly as

We can write this mathematically as,

This implies that,

where k is the constant of variation.

This implies that,


The equation becomes

When
